~ For TRS-80 Models

TRS-80
ROM ROUTINES
DOCUMENTED

Written by Jack Decker

s Arithmetic Routines

n String Handling Routines

= [nput and Output Routines

m PEEK and POKE Locations

m Model [, lIl, and 4 ROM Differences

jigis
ALTERNRATE

S@UIRCE

TRS-80 is a trademark of the Tandy Corporatior:

ERRATA NOTICE - TRS-80 ROM ROUTINES DOCUMENTED - 9/12/84

Flonse make the tollowing corrections to this edition of TRS-80 ROM ROUTINES
DOCUMENTED:

1) Appendix II (starting on page 86) is applicable ONLY to the original versions of the Model
4 ROM. The "new" Model 4 (with green screen and relocated arrow keys) uses a revised ROM with
several changes from the original, INCLUDING changes in the area between 0000H and ZFFFH
{which was previously unchanged from the Model III ROM),

2) Page 108 - Please make the following correction to line 1020 of the assembly language
source code on this page:

Change from’

7FEQ DO 01030 RET NC {RETURN IF END OF STRING
Tot
7FEQ C8 010320 RET Z IRETURMN IF END OF S8TRING

We apologize for these errors, and regret any inconvenience they may have caused anyone!

TRS-80 ROM Routines Documented Table of Contents

TABLE OF CONTENTS

PREFACE by Dave MCGIUMPNY .o owevecouccrocooeccocecsenesnosssassassscs ii
INTRODUCTION .o cecoooencoooossocososcscansscscossacaceononscscassssases L
CHAPTER ONE -~ Input and Qutput e s ereassacensosscsssencsacses 7
CHAPTER TWO - Arithmetic Routinescveevenceen cesssssssaes 21
CHAPTER THREE - Strings and String-Handling Routines 38
CHAPTER FOUR - Miscellaneous ROM RoOULINEScvecececnsancacasne 50
CHAPTER FIVE - Reserved RAM LocCatiOnseceeoeooconcooconsns cssss 063
APPENDIX I - Model I & III ROM BASIC COMPATredeeeeseeeeseoneoas 78
APPENDIX II - Rom Differences Between the Models III and 4 86
APPENDIX IITI -~ Model I ROM Changes cevas o e sessessssscese 90
APPENDIX IV - TRS-80 vs. PMC-80/Video Genie/System 80/TRZ-80 95
APPENDIX V - Relocatable Program Sample e esase s ceesecosas I8
APPENDIX VI - Improved Ampersand Functionc.cccee. csescecss 104
APPENDIX VII - Line Input Routines for Level II BASIC 109
APPENDIX VIII - BASIC Tokens and Entry Pointsccececeeoc. 119
HEXADECIMAL ADDRESS CROSS—REFERENCE ceeesvoansaa s sesescass 122

AFTERWORD by Charley Butler csseeceseasese e s s easecesesaae e 126

Page i

TRS~-80 ROM Routines Documented Preface

There once was a man up north

Who only BASIC spewed forth

'Til he dived in the ROM

and escaped all unharmed

to tell us what he learned perforce.

So it is with Jack Decker.

This book that he has written is the result of days, weeks, and
months of continuing study of how the TRS-80 ROM works. It is the
summarization of the work you would do if only you could find the time
to do it. Maybe you are pretty good at programming in BASIC, but you
can't quite figure out how ASSEMBLY is possible. Maybe you are tired
of writing the ASSEMBLY routines to print a line on the screen or to
get some keyboard input. Perhaps you have not figured out how to do
the arithmetic your assembly program needs. You know how to do it in
BASIC but do not have the faintest idea where to begin in assembly.
If BASIC can do it in the ROM, why not access those same routines from
assembly?! Jack shows you how.

This book is more than a disassembly. Jack gives you a good
education. He goes beyond one~line comments and gives you the "big
picture”. He shows you the background and the whys and wherefores of
the ROM subroutines. He offers tips and suggestions, and he warns you
of the pitfalls that can drive you bonkers when you use a subroutine
knowing only enough to be dangerous.

Jack has organized his book into the sections that you will need
as you work rather than by ROM address only. It is easier to know how
to access the routine you need successfully than it is to try to
figure out what all those instructions and comments on a page of
disassembly mean. Jack has done the "figuring out". He has saved you
a lot of time and trouble.

AND (!), his style is human. It is like having Jack sit in front
of your computer with him telling you the neat things he found out.

With that, Arnetta Rose Decker and I give you ...

TRS—-80 ROM ROUTINES DOCUMENTED
(or whatever the name of this comic book is gonna be...)

Dave McGlumphy, Chattanooga Microcomputer Club 07/31/83

Page ii

TRS-80 ROM Routines Documented Introduction

INTRODUCTION

The use of ROM routines can greatly simplify the task of writing
a machine language program. Many programmers like to make use of the
various subroutines found in the ROM in order to save memory, and to
eliminate the chore of writing a routine that's already available in
BASIC. One problem in using ROM routines is that many of them have
not been very well documented. This book will attempt to provide more
complete information than has been available heretofore on the various
routines found in the TRS-80 Model I and III ROMs. The emphasis of
this book will be to provide all information necessary £for the

programmer to actually make use of these ROM routines - information
such as how to access the routine, how to pass data between the
routine and the calling program, etc. All information given can be

assumed to apply to both the Model I and the Model III (and the Model
4, when operated in the "Model III mode®™), unless otherwise stated.

"It is my hope that having these ROM routines described in detail
will allow the machine-language programmer to make greater use of
them, so that he may save memory space and avoid "re-inventing the
wheel”™ at the same time. However, there is another use of these ROM
routines that I hope will be made, and that is that by studying them
and finding out how they work vyou will in effect be learning
Assembly-Language programming. Microsocft BASIC is generally very well
written (with occasional notable exceptions), and it is possible that
by looking over these routines you will pick up some good programming
techniques without too much effort.

Many of the ROM routines documented in this series have been
previously explained by others, in numerous boocks and magazine
articles. Although it is not possible to give credit to each and
every person that has made an indirect contribution to these articles,
I would like to give special credit to Mr. Lawrence J. Oliveira of
Sacramento, California. Some of Mr. Oliveira's heretofore unpublished
work has greatly influenced both the style and the content of this
book.

I'd like to hear about any useful ROM routines that you have
found that do not appear in this book. If vou have any guestions or
comments regarding this series, please feel free to write - perhaps
your routines or comments will help shape a future edition of this
book. Due to time constraints, I may not be able to send individual
replies to all that write, but I definitely will not send a reply if
you do not enclose a self-addressed stamped envelope (U.S. or Canadian
postage - 1if you can't provide either because you live in another
country, just send the self-addressed envelope). Even then, you may
receive only a few notes jotted on the back of vour letter. If you
need a fair amount of assistance, I suggest that you first ask around
at your local TRS-80 user group or computer club - many of these
groups have one or two "resident experts” that can answer most of the
guestions you may have!

Jack Decker
c/o The Alternate Source
704 North Pennsyvlivania Avenue
Lansing, Michigan 48906

Page 1

TRS-80 ROM Routines bDocumentead Introduction

IMPORTANT: All references in this book to the Model III should
be assumed to apply equally to the Model 4 when operated in the "Model
III mode", unless specifically stated otherwise. There are very few
differences between the standard Model III ROM, and the ROM installed
in the Model 4. Therefore, the practice in this book will be to
assume that anything applicable to.the Model III ROM also holds true
for the Model 4 ROM, including the places where the text states "Model
III only®"™. On the rare occasion where this is not the case, it will
be pointed out.

DISK OPERATING SYSTEM CONSIDERATIONS

This book is intended to be applicable to Model I and Model III
TRS-80's, whether they be cassette-based or disk-based systems.
However, the fact of the matter is that the computer operates
differently depending on whether or not a disk system is connected.
Before we can effectively use the ROM routines, we need to know what
the differences are, and how they might affect our programs.

Most Model I Expansion Interface owners are already familiar with
one difference, that being the operation of the computer when the
RESET button is depressed. In a system with no Expansion Interface,
pressing RESET returns you to the BASIC READY state, and is often
useful for escaping from programs that are "locked up". 2dd the
Expansion Interface, however, and vou'll find that depressing the
RESET button now re-boots the system, starting at DOS READY or MEMORY
SIZE?, and usually destroys the resident program. This difference in
startup procedures will normally not affect the typical machine
language program, but the differences between cassette- and disk-based
systems go far beyond that, and to ignore those differences is to
invite disaster. A ROM routine that works quite nicely under Level II
(non-disk) BASIC can operate differently (and perhaps give us all
sorts of grief) when we try to use it on a disk system. Here's why:

Level II BASIC was designed to fit into 12K of ROM (expanded to
almost 14K on the Model III). Realizing that some desirable functions
and commands would not fit into the 12K, Microsoft placed several Disk
BASIC exits in the ROM. These "exits" are jump instructions that Jjump
to an area in reserved RAM. Depending on the particular exit, one of
several different actions may be taken.

If a Disk BASIC command or function is entered from the keyboard
or used in a program, a jump will be taken to somewhere in the area of
memory between 4152H and 41A3H. At that location, three bytes of
memory will contain a jump to yvet another location - under Level II,
all of the jumps are to the L3 ERROR routine at 12DH, while under Disk
BASIC the jumps are to the area of Disk BASIC that handles that
particular command or function. These exits are commonly referred to
as "patch points®™ or “vectors". The term VECTOR is used to indicate
locations in reserved RAM that contain jumps to other locations (or
sometimes RET instructions when not in use), and are themselves jumped

to from other 1locations (usually in ROM). The purpose of these
vectors is to allow Disk BASIC or other programs to intercept the flow
of the BASIC interpreter at certain points. The usual sequence on a

Page 2

TRS-80 ROM Routines Documented Introduction

non-disk system is this: BASIC interpreter in ROM takes a jump to a
vector in RAM. Vector in RAM contains jump or return back into ROM.
Under Disk BASIC, however, the flow goes as follows: BASIC
interpreter in ROM takes Fump to vector in RAM. Vector in RAM
contains jump into Disk BASIC or DOS.

In any event, the vectors in the part of memory between 4152H and
41A3H will usually not trouble us, as they are only used for Disk
BASIC commands. 1In fact, if we have a non-disk system, we can use any
of the Disk BASIC command words to access our machine language
programs, by replacing the appropriate jump vector with a jump to our
program. As an exanmple, suppose we have a machine language program
that begins at 7000H. We could access it by typing, for example, the
NAME command under Level II BASIC. All we have to do is replace the
three bytes starting at 418EH with a Jp 7000H instruction, and from
then on the use of the NAME command (either from the keyboard or
within a BASIC program) will cause a jump to our machine language
program.

Another group of DOS exits are associated with the RST
instructions. When one of these instructions is executed, a jump is
taken from the ROM to a three-byte jump vector that begins somewhere
in the area of 4000H through 4012H. Under both Disk BASIC and Level
I, RST 8, RST 10H, RST 18H, and RST 20H all jump back into the ROM
to provide one byte access to commonly used ROM routines. These RST
instructions are used by most of the significant ROM routines, so if
these vectors are changed (by the Disk Operating System or another
program), calls to ROM routines could have unpredictable results.
However, since the DOS does not normally change these vectors, this is
generally not as great a problem as it might at first appear.

RST 28H is another potential problem, if any ROM routines are
being used that are expected to recognize the BREARK key. Under Level
II or Disk BASIC, pressing the BREAK key returns ASCII value of 1, but
under normal DOS operation the BREAK key returns an ASCII zero (in
other words, it is ignored). Another problem that may crop up in
regard to the use of the BREAK key is that if DEBUG is on, pressing
BREAK may cause a jump to DEBUG under some Disk Operating Systems.
However, since the user of the program would normally not have DEBUG
on (unless he were really trying to debug the program!), we can ignore
this in most applications. 1In any event, if either of these BREAK key
actions of the DOS turn out to be a problem, they can be canceled by
placing a CY9H byte (a RET instruction) at memory location 400CH (the
location of the vector for RST 28H).

There is a third group of DOS exits, and these will give us our
biggest headaches. These exits are called by many of the more useful
ROM routines, and are used to extend the capabilities of many of the
BASIC commands and functions under Disk BASIC. These exits Jjump to
three-byte vectors in the area from 41A6H to 41E2H. Under Level II,
each of these vectors contains a RET (C9H) instruction, but under Disk
BASIC the vectors are changed te fjump to the associated Disk BASIC
routines. The problem here is that if Disk BASIC has been loaded, and
then a return is made to DOS (or some other machine language program
has been activated), the associated Disk BASIC programs may be changed
or destroyed. Thus, a jump may be taken by the ROM to an area where

Page 3

TRS5-80 ROM Routines Documented Introduction

it expects to find a routine supplied by Disk BASIC, but in fact
anything could be at that location. If this is a potential problenm,
the solution is to insert a RET instruction (C9H) at every third byte
starting at 41A6H, and ending at 41E2H. The following segment of
assembly language code can be used to accomplish this:

LD HL, 41A6H

LD B,15H
LOOP LD (HL) ,0C9H

INC HL

INC HL

INC HL

DINZ LOOP

The problems mentioned above will occur only if three conditions
are met:

1) The program in gquestion makes calls to one or more ROM

routines that have DOS exits. A stand-alone program that makes no
calls to the ROM will not be affected by any of the problems
mentioned. Furthermore, any call to a routine that has no DOS exits

(within itself, or within any of the subroutines that it may call) is
immune to these problems.

2) A disk-based system is in use, or a program has been used
since power-up that has changed the DOS exits. Under normal
circumstances, on a cassette-based system all DOS exits will remain as
they were initialized during power up, thus avoiding any of the
problems mentioned above.

3) Level II or Disk BASIC is not resident. In other words, a
machine language subroutine designed to be used with BASIC under the
USR function will never be affected by these problems, because BASIC
(either Level II or Disk) will be present when the routine is called.
Ditto for any utility program designed to work with BASIC (such as a
BASIC line renumberer program) - again, we assume that BASIC will be
present.

Looking at the matter another way, what sort of program might be
expected to run afoul of these problems? One good example might be a
computer game program that is written entirely in Assembly language
(not part BASIC and part machine language), that makes calls to the
ROM for various functions and is expected to run under a disk-based
system. What can be done to avoid the problems? There are several
possibilities:

1) If the program is to be supplied on cassette tape, the user
will normally be instructed to load the program using the SYSTEM
command. This will normally avoid the problem, since BASIC must be
present for the SYSTEM command to be used. However, if the starting
address of the program is around 7000H or below (as it would likely be
with a game program), it is possible that it might overwrite part of
Disk BASIC. The solution here is to instruct the user to load the
program only under Level II BASIC (accomplished by powering up the
computer with the BREAK key depressed, or by typing BASIC2 from the
DOS READY prompt).

Page 4

TRS-80 ROM Routines Documented Introduction

2) The above solution stinks as far as most disk users are
concerned, since who wants to mess around with cassettes when you have
a disk system? Assuming that the user has transferred the program to
disk using TAPEDISK (or a similar utility program), it's possible to
load the program without destroving Disk BASIC by using the BASIC
CMD"I" command. However, the caution about overwriting Disk BASIC
still applies, and in addition the CMD"I" command may Wwork
differently, or may not be available at all, under different versions
of DOS.

3) The best solution is to include the short segment of Assembly
language code shown above to plug the DOS exits with RET instructions.
This will solve the problem for most programs. However, there is one
other potential conflict of which you should be aware.

If your program accepts input from the keyboard using one of the
ROM line input routines (which will accept characters and put them
into a buffer until ENTER or BREAK is pressed), you should be aware
that BASIC sets up a buffer that can hold up to 255 characters to
accept this input. The problem is that the buffer is at different
locations under Level II, Model III, or Disk RASIC. The two-byte
pointer to the start of the input buffer is located at 40A7H-40ABH.
If your program will require the use of this buffer, and you are not
sure that the one currently in use will not be overwritten when your
program is loaded, you may want to set aside space for your own buffer
and then change the pointer to point to the start of the buffer that
you have set aside for the purpose. Like the other problems, this one
will wusually only manifest itself when the program is run on a
disk-based system, and BASIC is not present.

In conclusion, I would offer the following piece of advice: If
you are writing a program that may fall into the "problem category”,
write it as if it will be used on a cassette-based system only (save
your machine language object code on tape rather than disk, and load
it from Level II BASIC only, using the SYSTEM command). When you have
it thoroughly debugged, then and only then try te run it under the

DOS. If it works, let a few friends try it (it's amazing how your
friends can make the computer go bonkers in ways you never thought
of). Be sure to go to Disk BASIC, then back to DOS READY and try to

reload the program. If it still works each time it's loaded, it will
probably run O.K. (but try it under different Disk Operating Systems
if you can, just to make sure). If you find you have problems, try
disassembling the ROM routines that you're using to find out what DOS
exits are being used. Or, just try using the hints given above and
see if they take care of the problem. Occasionally you may have to do
a little detective work to solve the problem, but in most cases you'll
find that the problems are resolved rather easily.

Keep in mind that certain programs (usually commercial programs
that you have purchased) have no respect for the use of RAM by the
system, and merrily proceed to wipe out all system pointers, etc. If
you have run one of these, you may have to reboot the system in order
to make your program {or any other) run properly. Your program is
probably not at fault if it will always work immediately after a
system reboot, unless the simple act of loading Disk BASIC, then

Page 5

TRS—-80 ROM Routines Documented Introduction

returning to DOS READY and attempting to load the program fails. Of
course, you must decide what you consider to be acceptable performance
(perhaps you don't mind having to reboot the system before using your

program).

Page 6

TRS—~80 ROM Routines Documented Chapter 1

CHAPTER ONE ~ INPUT AND OUTPUT

Before we can make the computer do anything useful, we have to
figure out how to get the results of our program into a form that we
can make use of. In addition, most programs will at some point
require some information that must be input from the "outside world."
We may want the results of our program to go to the video display, to
a line printer, or to a cassette or disk file. The input for the
program might come from the keyboard, or from a cassette or disk file.
The process of input and output is usually the most confusing part of
assembly-language programming for the beginner, because although he
probably has a fairly good idea of how to make his first simple
programs do what he wants them to do once the required data has been
passed to the program, he has no idea of how to request the data from
the keyboard, or how to get the result of the program on the video
display in human-readable form. This is where the use of available
subroutines in the ROM can turn a complicated task into a few easy
instructions.

DEVICE CONTROL BLOCKS

One of the first things you will encounter in using the input and
output routines are the Device Control Blocks, or DCB's for short.
Located in reserved RAM, these 8-byte long blocks contain various
pieces of information related to the operation of the keyboard, the
video display, and the line printer (and the RS-232-C interface and
the 1/0 Router in the Model II1I only). It is in these blocks that we
find the driver addresses for the devices mentioned, and we can
replace these driver addresses with the addresses of substitute driver
programs or patches to the ROM drivers if necessary. As an example,
the KBFIX program (used in older Model 1I's to fix the keybounce
problem) replaced the driver address in the keyboard DCB with the
address of its debounce routine. The debounce routine (which was
actually a substitute for some of the code in the ROM keyboard driver)
then jumped into the ROM at a different location. Another example of
the use of a DCB driver address is the lowercase driver program (used
with a hardware lowercase modification) that puts its address into the
video DCB, in order to replace a section of "bad" code in the ROM,
then jumps into the video driver just past the unwanted ROM code.

The formats of the various DCB's are as follows:

pPage 7

TRS-80 ROM Routines Documented Chapter 1

KEYBOARD DEVICE CONTROL BLOCK

4015H Device Type (normally 1 = read only)

4016H LSB of Driver Address

4017H MSB of Driver Address

40188 0 (in Model III but NOT Model 4, location used by shift-lock

routine)

4019H 0 (in Model III, O="Upper & Lower Case", else "Caps only")

401AH 0 (in Model III, time counting byte for blinking cursor)

401BH "K" (in Model III, status of blinking cursor-on or off)

401CH "I" (in Model III, Cursor Blink Switch - 0="Blink")
("K1"=Keyboard Input - Model I only)

VIDEO DEVICE CONTROL BLOCK

401DH Device Type (normally 7 = read and write)

401EH LSB of Driver Address

401FH MSB of Driver Address

4020H LSB of current Cursor position (3CO00H to 3FFFH)

4021H MSB of current Cursor position

4022H Character "covered" on video by Cursor character

40238 *D" (in Model III, ASCII code for Cursor character)

4024H "0O" (Model III: O=Space Compression, l="Special® Characters)
{"DO"=Display Output - Mcdel I only)

LINE PRINTER DEVICE CONTROL BLOCK

4025H Device Type (normally 6 = write only)
4026H LSB of Driver Address
4027H MSB of Driver Address
4028H 67 - Number of lines per page (+1 in Model III only)
4029H Current Line Number (Model III: Number of lines printed +1)
402AH 0 (Model IIXI: Number of characters printed on current line)
402BH "P" (in Model III, max. line length -2, 255="No maximum")
402CH "R" (in Model 4 only, zero byte)

{"PR"=Printer - Model I only)

RS-232-C INPUT DEVICE CONTROL BLOCK (Mocdel III only)

41E5H Device Type (normally 1 = read only)

41E6H LSB of Driver Address

41E7H MSB of Driver Address

41E8H Character Received (0 = no character)

41E9H Bit 1 = Wait/No Wait Flag, Bit 2 = Driver On/Off Flag

41EBH "F1" key definition in Model 4 only (used by Keyboard Driver)
41ECH "F2" key definition in Model 4 only (used by Keyboard Driver)

Page 8

TRS~80 ROM Routines Documented | Chapter 1

RS—-232~-C OUTPUT DEVICE CONTROL BLOCK (Model III only)

41EDH Device Type (normally 2 = write only)

41EEH LSB of Driver Address

41EFH MSB of Driver Address

41F0H Character to Transmit

41F1H Bit 1 = Wait/No Wait Flag, Bit 2 = Driver On/0Off Flag

41F3H "F3" key definition in Model 4 only (used by Keyboard Driver)

41F4H Kevboard row storage for 3880H' in Model 4 only (used by Keyboard
Driver)

RS~232~C INITIALIZATION DEVICE CONTROL BLOCK (Model III only)

41F5H Device Type {(normally 2 = write only)

41F6H LSB of Driver Address

41F7H MSB of Driver Address

41F8H Baud Rate Codes (Bits 0-3 = Receive, Bits 4-7 = Send)
41F9H RS~-232-C Characteristics Switch

41FAH Wait/Don't Wait Switch (0 = Don't Wait)

I/0 ROUTER DEVICE CONTROL BLOCK (Model III only, NOT initialized in
Model 4)

421DH Device Type (normally 2 = write only)

421EH LSB of Driver Address

421FH MSB8B of Driver Address

4220H First character of Destination Device Code

4121H Second character of Destination Device Code

4122H First character of Source Device Code

41238 Second character of Scurce Device Code

4224H Control Key Flag (used by Keyboard Driver - Models III and 4)
(Source & Destination Codes may be any of: KI, DO, RI, RO, PR)

A further clarification of locations 4028H and 4029H (located in
the line printer DCB) is in order. 4028H is set to 67 decimal on
power-up in both the Model I and the Model III. This number is
correct on the Model III (assuming that standard 66-line forms are
being used in the printer), but on the Model I it can cause some
printers to "creep" up one line per page. If you have this problem,
try typing POKE 16424,66 from the keyboard and see if it corrects the
problem. The Model III should not have this problem since it counts
lines differently. Specifically, on the Model I location 4029H holds
the actual number of lines already printed on a page, while on the
Model III this location holds the number of lines already printed plus
one.

If you are intercepting one of the drivers by storing an address
that points to your routine in the DCB, you should be careful to save
the address that is already in the DCB. Too many programmers make the
mistake of thinking that their routine will be the only one in high
memory, so you have a situation where two machine language programs
are mutually incompatible. Here's why: Program one loads into high
memory and places its address in the DCB. Now program two is loaded
in, and without any checking to see what is already in the DCB, it

Page 9

TRS-80 ROM Routines Documented Chapter 1

places ITS entry point address in the DCB. The exit from program two
is a jump to the normal ROM driver routine. Because of this, program
one 1is "lost™ to the user. If instead, program two (during its
initialization segment) gets the address from the DCB and loads that
address into the main part of the program (at the program exit
instruction), the two ©programs will (hopefully) be mutually
compatible.

Here's an example of checking the driver address and then using
it in your routine:

00100 START ORG nnnn

00110 LD HL, (4016H) ;Address in keyboard DCB

00120 LD (USREND+1) ,HL ;Address of end of routine
00130 LD HL,USRST ;Address of start user routine
00140 LD {4016H) ,HL ;User routine address in DCB
09999 USREND JP 0 ;0 replaced by DCB address

Your exact situation may be somewhat different but the idea is
the same - when you write a program, try not to "clobber” the address
already in the DCB, unless it is unavoidable. It will usually only be
unavoidable if you are rewriting a portion of the ROM driver routine
itself, then jumping into ROM at other than the normal entry point.

If you are just beginning to program in Assembly Language, don't
worry about the above consideration at first. If, however, you are
creating a program to sell to other TRS-80 owners, you definitely
should keep it in mind.

ROM INPUT AND OUTPUT ROUTINES

The following routines are available for use in the Model I/III
ROM. If you are operating under DOS, be sure to read the portion of
the introduction to this book entitled "Disk Operating System
Considerations" before attempting to use these routines (otherwise you
may have unpredictable results).

GENERAL INPUT/OUTPUT ROUTINES

0013H - Inputs a byte from an input device. When calling, DE =
starting address of DCB of device. On exit, A = byte received from
device, %z set if device ready. Uses AF.

00IBH - Outputs a byte to a device. When calling, A = output byte, DE
= starting address of DCB of device. On exit, Z set if device ready.
Uses AF.

032AH - Output a byte to device determined by byte stored at (409CH) -
FFH=Tape, O0=Video, l=Printer. When calling, A = output byte. Uses
AF (may use other registers as well). Warning: This routine CALLs a
Disk BASIC link at address 41ClH which may have to be "plugged" with a
RETurn (CS9H) instruction.

Page 10

TRS~80 ROM Routines Documented f Chapter 1

038BH - Reset device type flag at 409CH to zero (output to wvideo
display), also outputs a carriage return to the line printer if
printer 1is not at beginning of line (determined by checking the
contents of the printer line position flag at 409BH - if flag contains
zero, printer is at start of line). Note that if printer 1line
position flag does not contain zero and the printer is not on line,
the computer will "hang up" waiting for a "printer ready” signal. See
also routine at 2169H (described below).

20FEH - Qutput a carriage return (ODH) to a device determined by flag
stored at (4089CH). NOTE: This routine may be CALLed at 20F9H, in
which case it will not perform the above action if the video display
cursor is already positioned at the beginning of a line, as determined
by checking the contents of the cursor position flag at 40A6H (if
zero, cursor 1is at start of line). This routine CALLs the routine at
032AaH and also CALLs a Disk BASIC link at 41D0H. See the warning for
the routine at 032AH (above).

213FH - TAB function for video or printer (determined by flag at
409CH). On entry: E register contains desired TAB position, HL points
to start of message to be displayed (or zero byte if no message).
This routine does extensive string processing and may not be the most
efficient method of achieving the desired result, particularly if it
is desired only to tab over a number of spaces. Also, this routine
CALLs several Disk BASIC links which may have to be "plugged”.

2169H - Reset device type flag at 409CH to =zero (output to wvideo
display), also turns off cassette drive if necessary. CALLs Disk
BASIC 1link at 41BEH prior to return. See also routine at O038BH
(described above).

2B75H - Output a string to device indicated by device type flag stored
at 409CH. String must end with zero byte. On entry, HL registers
must point to address of start of string. Calls routine at 032AH (note
warning for that routine - see above).

28A7H - Essentially the same effect as the routine at 2B75H (described
above), except that text may also end with a gquotation mark (22H),
creates string vector before output (destroys current contents of
ACCUM, sets number type flag at 40AFH to 3 - see chapter two of this
book), and also uses BC & DE registers. Depends heavily on BASIC
string management routines (use of 2B75H or other routines may be
preferable). If string contains a carriage return (0ODH) character, a
CALL will be made to the Disk BASIC link at 41DOH. Used by BASIC
PRINT statement. This routine may also be entered at 28A6H, in which
case the HL register pair will be incremented prior to beginning to
output string.

NOTE regarding the routines at 032AH, 2B75H and 28A7H: These routines
(as well as many others) use a flag byte to determine if the wvideo
display is in the 32 or 64 characters per line mode. 1In the Model I,
this flag is located at 403DH and actually contains the CURRENT PORT
0FFH OUTPUT BITS, which are organized as follows:

Page 11

TRS-80 ROM Routines Documented Chapter 1

BIT 3 Select video 32 character mode if set

BIT 2 Turns on cassette tape relay if set

BITS 1 & 0 Are set for positive and negative audio pulses to the
cassette "AUX" plug

In the Model III, this flag is located at 4210H and actually contains
the CURRENT PORT OECH OUTPUT BITS, which are organized as follows:

BIT 6 Enables fast clock speed if set on Model 4 only

BIT 5 Disables video wait states if set (not used on Model 4)

BIT 4 Enables I/0 bus if set

BIT 3 Japanese Kana character set used as "special" characters if
set

BIT 2 Select video 32 character mode if set

BIT 1 Turns on cassette tape relay 1f set

BIT O Enables clock display on video if set

The above values take effect when they are OUTput to the proper port
{0FFH or Q0ECH). However, in all current editions of the Model III
ROM, an error exists in that the test for double-width characters at
0348H (used by all three of the above mentioned routines) has not been
changed to test the flag at 4210H rather than the flag at 403DH. This
can cause serious problems when attempting to use the 32-character
mode on the Models III and 4 (even when programming in BASIC). It
should also be noted that there is a hardware problem associated with
the Model III 32-character mode that sometimes causes characters to be
improperly displayed even though they are apparently stored correctly
in video memory (this problem does NOT seem to show up when the ROM
routines are used, but can appear when the programmer uses a machine
language loop to move a text string from somewhere in memory to a
video memory location). The solution to this hardware problem is to
use an LDIR or LDDR instruction to perform the move, or to insert a
NOP instruction after any load (LD) instruction where the destination
of the load is video memory (3CO00H-3FFFH). Both of the above problems
are evident only on the Model III, and then only when using the
32-character video display mode (thanks to Jesse Bob Overholt for
providing the solution to the hardware problem mentioned above).

KEYBOARD ROUTINES

NOTE: All of the following keyboard routines (except for the Model III
fast BREAK check at 028DH) use the ROM keyboard driver routine, which
executes a RST 28H instruction prior to returning to the calling
routine if the BREAK key was depressed. A Jp 400CH instruction is
found at 0028H, and under a non-disk system 400CH contains a RET
instruction (unless modified by a user program). However, under a
disk-based system RST 28H is also used for DOS overlay requests, and
the wvector at 400CH contains a jump into the Disk Operating System.
More information on the RST 28H routine can be found in chapter four
of this book.

002BH - Loads DE with address of keyboard DCB and scans keyboard. On
exit, if no key pressed the A register will contain a zero byte, else
the character input from the keyboard will be returned in A. Character
is not echoed to video. Uses AF,DE (to save DE use routine at 0358H).

Page 12

TRS-80 ROM Routines Documented Chapter 1

0040H - Line input routine. Jumps to 05D9H (see description of that
routine below).

0049H - Scan keyboard until key pressed (continuous calls to 002BH).
Returns with character in A. Uses AF,DE (to save DE use routine at
0384H).

028DH - Model III only. Very fast check for BREAK key only. On exit,
BREAK was pressed if 7 flag is reset (NZ status). Uses AF. For Model
I users that may wish to duplicate this action, the ROM code used is
as follows:

LD A,(3840H)
AND 04H
RET

0358H - Calls Disk BASIC link at 41C4H, then saves DE and calls 002BH
(Warning: Disk BASIC link may need to be "plugged”, or you may bypass
this link entirely by entering the routine at 035BH).

0361lH - Input a line from the keyboard into the BASIC input buffer
(starting address of buffer is found at locations 40A7H-40A8H).
Maximum allowable input length is 240 characters. On exit, returns
starting address of buffer minus one (location prlor to first
character) in HL. End of input is marked by zero byte in buffer. ¢
flag is set if input is terminated by BREAK key. Uses AF,DE,HL.
CALLs Disk BASIC link at 41AFH which may have to be "plugged“ See
also routine at 0040H (above).

0384H - Scan keyboard until key pressed (continuous calls to 0358 -
see above warning for this routine). Returns with character in A.
Uses AF (see also routine at 0049H).

03E3H - Model I ROM Keyboard driver address (as found in keyboard DCB).

05D9H - Line input routine. This routine displays each character as
it is entered from the keyboard, and takes action on the control
keys.

On entry:

HL polnts to start of buffer that will hold input.

B = maximum number of bytes to input.

Input is terminated by ENTER or BREAK (see note below).

On returng
HL points to start of text,
B = actual input length (less terminator).
C = original contents of B register.

= termlnatlng character (BREAK or ENTER).
C flag set if input terminated by BREAK,

When this routine is used under a Disk Operating System and Disk BASIC
is not initialized, the BREAK key is ignored and will not act as an
input terminator for this routine (a zero byte will be returned when
the BREAK key is pressed). When used with Level II or Disk BASIC,
pressing the BREAK key returns a 0lH character which is then acted

Page 13

TRS-80 ROM Routines Documented Chapter 1

upon as shown above, except that some Disk Operating Systems allow the
user to set a flag that specifies that the BREAK key is to be ignored
at all times (even when Disk BASIC is in use). Anytime that the Disk
Operating System has disabled the BREAK key, this routine will ignore
it as well. Also, note that in some cases (such as when using TRSDOS
with DEBUG on), pressing the BREAK key may cause an immediate entry
into DEBUG.

1BB3H ~ Displays prompt character (question mark followed by space)
and then jumps to routine at 0361H (see above).

1D9BH - ROM BASIC check for BRERK or SHIFT-@ characters. Calls
routine at 0358H (note warning for this routine - see above),
decrements the A register, and takes appropriate action if either key
is pressed (suspends program execution on SHIFT-@; or sets certain
BASIC pointers, displays BREAK message, and goes to BASIC READY state
on BREAK) - otherwise returns with keyboard character minus one in A.

21C9H - ROM BASIC "INPUT" routine. Print prompt string (if any) and
get user input to variable. On entry: HL points to quotation mark
(start of prompt string) or first character of variable name (if no
prompt string) immediately following "INPUT" command. On exit: HL
points to zero byte if input was valid, else prints "? REDO" (if
certain flags are set properly) and requests more input. Syntax must
be legal for BASIC "INPUT" statement, for example:

"prompt String"; VARIABLE NAME <zero byte>
or simply: VARIABLE NAME <zero byte>

Multiple variables may be INPUT with one statement:
VARIABLE NAME,VARIABLE NAME, ... VARIABLE NAME <zero byte>

A colon may be used in place of the zero byte. See chapter two of
this book for more information on the portion of this routine that
begins at 21E3H, including information on which flags must be set to
assure that the "?REDO" message is printed in the event of an input
error, and how to determine if an error has occured. NOTE: The
routine that displays the prompt string (if any) may be CALLed
separately at 21CDH. This routine will return immediately if the HL
register pair does not point to a quotation mark (22H) on entry.
Otherwise, the prompt string must be terminated with a quotation mark
followed by a semicolon (3BH), or else a syntax error will result.

30248 - Model III ROM Keyboard driver address (as found in keyboard
DCRB) .

VIDEG ROUTINES

0033H - Loads DE with address of video DCB, and displays character
stored in A at current cursor position (cursor position stored at
4020H-4021H). This routine also performs control functions. Uses
AF,DE (to save DE use routine at 33AH).

Page 14

TR5-80 ROM Routines Documented Chapter 1

0150H - Routine used by BASIC POINT, SET, and RESET functions. To use
in an assembly-language program, follow this procedure: PUSH the
RETurn address on stack. Load HL with address of a right parenthesis
character (29H). Load A register with 0 for POINT, 80H for SET, or 1
for RESET, then PUSH AF. Load A register with X-coordinate value in
range 0 to 7FH, then PUSH AF. Load A register with Y-coordinate value
in range 0 to 2FH. Finally, jump to 150H (don't CALL it). If POINT
function is selected, on return from routine arithmetic accumulator
(see chapter two of this book) will contain zero if POINT(X,Y) is off,
-1 if on (integer precision).

01C9H ~ Clears screen and homes cursor (BASIC CLS command).

021BH ~ Model III only. Video line display routine. Displays the
text starting at the address in HL. String may contain control
characters. Text must be terminated by carriage return character
(ODH, which will be printed), or end of text marker (ASCII ETX=03H,
which will NOT be printed). On return HL points to the first
character following the terminator character. Uses AF,DE,HL.

0298H - Model III only. Turn on the clock display (SET bit 0 of
memory location 4210H). Uses AF.

02A1H - Model III only. Turn off the clock display (RESet bit 0 of
memory location 4210H). Uses AF.

033AH - Saves contents of DE register and calls routine at 0033H (see
above), also updates cursor line ‘position indicator at 40A6H (used by
TAB function). Uses AF.

0348H - Get current cursor position on line in A register. On return
from this routine the A register will contain a value in the range O
through 63 if the video display is in the 64 characters per line mode,
or 0 through 31 if the 32 characters per line mode is selected. See
note under routine at 28A7H (under GENERAL INPUT/OUTPUT ROUTINES) for
information on Model III ROM error in this routine.

0458H - Model I ROM Video driver address (as found in video DCB).
0473H - Model III ROM video driver address (as found in video DCB).

20F9H - Outputs a carriage return to video if cursor is not already at
the beginning of a line. See routine at 20FEH (under GENERAL
INPUT/OQOUTPUT ROUTINES) for more information.

LINE PRINTER ROUTINES

003BH - Loads DE with address of printer DCB and checks memory
location 37E8H to determine printer status. If the A register
contains zero upon entry, the routine exits with the Z flag indicating
printer status, otherwise the routine waits until the printer is ready
and then outputs the contents of the A register to the printer. On
the Model III only, the BREAK key may be used to escape from this
routine 1f the printer is not ready. On exit, 7z flag is set if
printer was ready.

Page 15

TRS-80 ROM Routines Documented Chapter 1

0lDSH - Model III only. Output all 1024 characters on video display
to printer (graphics characters are changed to periods). Uses
AF ,DE,HL.

0214H - Model III only. Output a carriage return (0DH) to printer. A
register contains zero (Z flag set) on return. Uses AF,DE.

0394H - Output a carriage return to printer. Loads A register with
ODH prior to calling routine at O039CH (see description below). A
register contains ODH on return. Uses AF.

039CH - Output character in the A register to the printer. Also
maintains the line width counter at 409BH, which is incremented for
each character printed, except that it is reset to zero if character
is line feed (0AH), form feed (OCH), or carriage return (ODH). Line
feed (0AH) characters are changed to carriage return (0ODH) characters
prior to calling the printer output routine. CALLs routine at 003BH
(see above for description of that routine).

03C2H - Model III ROM Printer driver address (as found in printer
DCB}.

0440H - Model II1 only. Wait for "printer ready” status or BREAK key
depressed. To use, PUSH address where program should jump if BREAK is
depressed onto stack, then CALL 0440H. Returns to calling routine if
printer is ready. If BREAK is pressed, POPs the return address off of
the stack and then executes a RET instruction. Uses AF.

044BH - Model III only. Test printer status. Same as Model I routine
at 05D1H (see description of that routine below).

058DH - Model I ROM Printer driver address (as found in printer DCRB).

05D1H - Model I only. Test printer status. On return, % flag set if
printer is ready to accept output. This routine can be used to check
the printer status prior to attempting output to the printer, thus
avoiding the possibility of "hanging up" the computer if the printer
is not ready. This routine can be used in programs designed to run on
either Model (I or III) - to do this, first LD A,(37E8H) and then
CALL 05D4H. Uses AF.

CASSETTE INPUT/OUTPUT ROUTINES
01D9H - Model I only. Make a cassette pulse. Uses AF,B,HL.
01F8H - Turn off cassette drive. Uses AF.

O0lFEH - Model I only. Define cassette drive. On entry, if HL points
to a 23H byte ("#"), then a cassette drive number (-1 or -2) followed
by a comma is expected in the bytes immediately following the one
pointed to by HL, and the cassette drive so specified is selected.
Otherwise drive one 1is used by default. The code at 0212H (see
description below) is then executed. Uses AF, and if HL points to a
23H byte also uses BC,DE,HL.

Page 16

TRS~80 ROM Routines Documented Chapter 1

0212H - Model I only (also may be used with Model III). This routine
will select the proper cassette drive according to the value stored in
the A register upon entry (0 = first cassette, 1 = second cassette),
and will turn on the drive motor. NOTE: This routine is not present
in the Model III. However, in order to accommodate existing Model I
software, location 0212H in the Model III contains an XOR A
instruction followed by a RET instruction. Uses AF.

0215H -~ Model T only. Turn on cassette drive. Same as routine at
0212H (see description above) except does not select cassette drive
(previcusly selected drive is used). Uses AF.

021ER - Model I only. Reset cassette input port O0FFH. Uses AF,HL.

022CH - Model I only (also may be used with Model III). Blinks right
asterisk during tape 1load operations. NOTE: On Model III this
location has jump to 0212H (zeroes A register and returns). Uses AF.

0235H - Read one byte from the tape into the A register. Uses AF.

0241H - Model I only. Read one bit and shift into A register. Uses
AP, HL.,

0264H - Write the byte stored in the A register to tape.

0284H - Turn on cassette motor, write leader and sync byte. In Model
I, makes CALL to OlFEH (see description above) to select the proper
cassette drive prior to executing routine at 0287H, while in the Model
III this location contains a JP 0287H instruction (only one cassette
drive is used with the Model III). Uses AF (except in Model I may use
additional registers as noted for the routine at 0lFEH).

0287H - Write leader and sync byte (A5H). Also turns on cassette motor
on Model III only. Uses AF.

0293H - Define drive (on Model I only), turn on cassette motor,
searches for leader and sync byte on cassette, then puts two asterisks
in upper right corner of video. In Model I, makes CALL to OlFEH (see
description above) to select the proper cassette drive prior to
executing routine at 0296H, while in the Model III this location
contains a JP 0243H instruction (0296H contains a JR 0243H instruction
on the Model III). Uses AF (except in Model I may use additional
registers as noted for the routine at OlFEH).

0296H ~ Turns on cassette motor (on Model III only), then searches for
leader and sync byte. When found, puts two asterisks in upper right
corner of video. Uses AF,.

0314H - Reads two bytes (LSB/MSB) and transfers to HL registers (used
when reading SYSTEM format tapes). Uses AF,HL.

2BF5H ~ BASIC CSAVE routine. Saves a BASIC program to tape. On
entry, the HL register pair must point to the start of a wvalid
filename seguence (a gquotation mark followed by a single character
filename, which in turn may be optionally followed by a second

Page 17

TRS-80 ROM Routines Documented Chapter 1

guotation mark. The entire filename sequence must be terminated by a
zero byte or colond.

2C1FH - BASIC CLOAD routine. Loads a BASIC program from tape. On
entry, the HL register pair must point to a valid argument for the
CLOAD command, or to a zero byte or colon terminator. A valid argument
could consist of a filename sequence (as explained for above CSAVE
routine), a gquestion mark (to verify the program on tape against the
program in memory), etc. Arguments must be properly terminated with a
colon or zero byte. NOTE: This routine does NOT return to the
calling program, but instead exits to the BASIC command level
{"READY" .

3000H - Model III only. Writes 500 baud leader and sync byte. Also
places address of slow write routine into cassette write vector at
420CH.

30030 - Model III only. Writes 1500 baud leader and sync byte. Also
places address of fast write routine into cassette write vector at
420CH.

30068 - Model III only. Searches for 500 baud leader and sync byte.
Alsc places address of slow read routine into cassette read vector at
420EH.

3009 ~ Model III only. Searches for 1500 baud leader and sync byte.
Alsc places address of fast read routine into cassette read vector at
4208H.

300CH - Model III onlv. Turn off cassette (routine at O01F8H jumps
here) .

300FH -~ Model II1IXI onlv. Turn on cassette {alsoabianks video locations
normally occupied by asterisks while loading tape).

30428 ~ Model III only. Prompts the user to set the cassette baud
rate {(displays "Cass?"}). If user enters "L" the 500 baud rate is
selected. If user enters "H" or "ENTER" the 1500 baud rate is
selected. Cassette baud rate switch at 4211H is set to zero for 500
baud rate, ODH or 48H ("ENTER" or "H") if 1500 baud selected.

NOTE REGARDING MODEL III CASSETTE READ AND RS-232-C I/0 ROUTINES: The
Model III allows the user to press the BREAK key to abort a cassette
load or RS$S-232-C input or output, however pressing BREAK in this
manner will immediately return the user to the BASIC YREADY" prompt.
The BREAK key vector used for this purpose is located at 4203H, and
normally contains a Jp 022EH. 022EH contains an EBI (Enable
Interrupts) instruction followed by a jump to 1Al9H ("READY"). If it
is not desirable for the user to be able to return to BASIC, it is
suggested that the vector at 4203H be changed to provide the desired
result. Note that the location of the stack pointer may be
unpredictable, therefore best results may be obtained by plugging the
vector with a RET instruction to return to the calling routine.

Page 18

TRS-80 ROM Routines Documented Chapter 1

R5-232-C ROUTINES (MODEL III ONLY)

0050H - Model III only. Receive one character from the RS-232-C
interface. If RS-232-C Wait is enabled, this routine waits for a
character to be received, or until the BREAK key is pressed. If Wait
is not enabled, it returns whether or not a character is received.
Character received (if any, or zero if no character) is stored at
41E8H and also in the A register. Uses AF,DE.

0055H - Model 1III only. Transmit one character to the RS-232-C
interface. If RS-232-C Wait is enabled, this routine waits until the
character is transmitted, or until the BREAK key is pressed. If Wait
is not enabled, it returns whether or not the character was
transmitted. On entry, if a non-zero byte is stored at 41F0H, that is
the character that will be output to the RS-232-C, otherwise whatever
character was stored in the A register on entry will be used. The
buffer at 41F0H is cleared after the character is sent. Uses AF,DE.

005AH - Model III only. 1Initialize the RS-232-C interface. On entry,
memory location 41F8H is expected to contain the send and receive baud
rate codes (send in the most significant four bits, receive in the
least significant four bits), 41FAH contains the Wait/Don't Wait
switch (0 = "Don't Wait", any other value indicates "Wait"), and
location 41F9H contains the Characteristics switches as follows:

Bits Meaning

7 Parity (l=Even, 0=0d4dd)

6,5 Word Length (00=5, 0l=6, 10=7, 11=8 bits)
4 Stop Bits (0=0One bit, l=Two bits)

3 Parity On/Off (0O=Parity, 1=No Parity)

2 Transmit On/0Off (0O=Disable, l=Enable)

1 Data Terminal Ready (0=No, l=Yes)

0 Request To Send (0=No, l=Yes)

This routine uses the AF,DE registers.

301BH - Model III RS-232-C Initialization driver address (as found in
RS~232~-C Initialization DCB).

30lEH ~ Model III RS-232-C Input driver address (as found in RS-232-C
Input DCB).

3021H - Model III RS-232-C OQutput driver address (as found in RS-232-C
Output DCB).

I/0 ROUTER ROUTINES (MODEL III ONLY, NOT IN MODEL 4)

006CH - Model III only. Change I/0 device routing. On entry, memory
locations 4222H-4223H are expected to contain the two-letter ASCII
abbreviation for the source device, and 4220H-4221H are expected to
contain the two-letter ASCII abbreviation for the destination device.
Valid two-letter abbreviations are KI (Keyboard Input), DO (Display
Output), RI (RS-232~-C Input), RO (RS-232-C Output), and PR (PRinter).
Uses AY,DE.

Page 19,

TRS-80 ROM Routines Documented Chapter 1

3027H - Model III Vector to the I/O Router driver (jump to same
address as is found in I/0 Router DCB).

NOTE REGARDING THE MODEL III I/0 ROUTER ROUTINES: The 1/0 router
routine has been removed from the Model 4 ROM. If a CALL is made to
either of the above routines on a Model 4, there will be a return to
the calling routine with no change in device routing.

Page 20

TR5-80 ROM Routines Documented Chapter 2

CHAPTER TWO - ARITHMETIC ROUTINES

NUMBERS AND THE TRS-80

One of the advantages of using the ROM subroutines found within
the TRS-80 is that the programmer generally does not need to
understand the Microsoft system of floating-point number storage. ROM
input routines can be used to translate numbers from human-readable
form to the proper integer or floating-point format so that they can
be processed by the computer, and ROM output routines can translate
the result of our computations back to ASCII format for display
purposes.

However, it never hurts to understand the manner in which the
BASIC interpreter goes about its tasks. The problem here is that most
of the currently available texts do not succeed in explaining the
Microsoft number storage systems in a way that can be easily
understood (translation: after I read them I was more confused than
before}. I finally figured out the system, and it isn't really that
difficult to understand if you approach it properly. The one
assumption that I am making in the following discussion is that the
reader understands the binary (base 2) number system. If vou're not
sure of yourself on that point, try to follow the text anyway and
you'll probably figure it out. If you need further assistance in
understanding binary numbers, it is highly recommended that you ask
for assistance at your local school system (assuming that they teach
the "new math"), or at a computer club meeting. Binary is not

INTEGERS

Bach "byte" of memory in the TRS-80 holds eight "bits"™ (BInary
digiTsy. Thus, the largest number that can be represented in one
memory location of the TRS-80 is 11111111 binary, or 255 decimal.
This is why arguments for the BASIC PEEK and POKE commands must be in
the range of 0 to 255. These commands will only operate on one byte
of memory at a time. Each individual register of the Z-80
microprocessor also holds only eight bits, or one byte, of memorv.

Carrying this idea one step further, if we use two adjacent
memory locations, or one of the register pairs of the %-80 (such as
the BC, DE, HL, IX, or IY register pair), we can store a number as
large as 1111111111111111 binary (that's sixteen ones), or 65535
decimal. Indeed, this 1is how the TRS-80 represents BASIC line
numbers. We'll call this the POSITIVE INTEGER format.

The difference between this format and the INTEGER PRECISION of
the TRS-80 is the ability to represent negative numbers. You may know
that if a BASIC variable is defined as an integer, the allowable range
for that variable is from -32768 to +32767. We get negative numbers
by using the leftmost bit as a sign bit. If the bit is set (a binary
"1"), the remaining fifteen digits represent a negative number.

Page 21

TRS~-80 ROM Routines Documented Chapter 2

Otherwise, the rightmost fifteen binary digits represent a positive
number. As an example, if we have the binary digits

0 111111111111111

the sign bit indicates a positive number, and the remaining digits
represent 32767 decimal. So, the number in decimal is +32767.

All well and good so far. Now, suppose we have the following
group of sixteen bits:

1 111111111111111

Our sign bit is set, indicating a negative number. The remaining
digits represent 32767, so we have -32767, right? Sorry about that,
it doesn't work that way. There are two ways that we can determine
the correct value, and you may pick the one that is easiest for you to
use.

The first method is a follows: If the sign bit is set, treat the
number as a 16-bit positive integer and subtract 65536 from that value
to get the true value. In other words, we already know that sixteen
"1" bits represent 65535 decimal in POSITIVE INTEGER format. If we
subtract 65536 from 65535, we are left with a total of -1, which is
the INTEGER PRECISION value of the binary 1111111111111111.

The second method isg this: If the sign bit is set, complement
each of the 16 bits (replace each "1" with a "0" and each "0" with a
D I Then add one to the result. The result of this action will be
a positive expression of our negative number. To illustrate this
point, consider that binary 1111111111111111 when complemented will
equal 0000000000000000, If we then add cne, we will have our correct
value of (negative) one.

If you have more than 16K of memory in your TRS-80, vou probably
are already aware of the offset for negative numbers, if you ever do
PEEKs or POKEs to high memory addresses. If the address to be
referenced by the PEEK or POKE is greater than 32767, vou must
subtract 65536 from the actual memory address in order to make the
PEEK or POKE function properly. This is an example of converting a
number from POSITIVE INTEGER format to INTEGER PRECISION as used in
the TRS-80.

Just in case this isn't complicated enough for you, there's one
more "gotcha® yvou should be aware of, if you're not alreadv. it is
that numbers are stored in memory with the LEAST significant bytes
FIRST. In other words, if a number is written in binary as

0111011110001000

and we instruct the TRS-80 to store this number in memory locations
5000H and 5001H, here's what each of these locations will contain:

50008: 10001000
50018: 01110111

Page 272

TRS-80 ROM Routines Documented Chapter 2

You guessed it. Just the opposite of what vou'd expect. The Z-80
processor was designed this way because it's much easier to work with
a number when the least significant bits are accessed first.

SINGLE AND DOUBLE PRECISION NUMBERS

Integer numbers are relatively painless. Single and Double
precision numbers are a little different. The first thing toc remember
is that the rules that apply to integer numbers do not apply to single
or double precision numbers. The second thing to remember is that
single precision numbers are stored in four bytes of memory (or
sometimes two register pairs, such as BC and DE), while double
precision numbers take eight bytes of memory. However, the formats
for single and double precision are exactly the same, except that
double precision numbers have four more bytes. Therefore, anything
that is said about single precision numbers also applies egqually to
double precision, if you change the byte count accordingly. If we talk
about "the remaining three byvtes" of a single precision number, vou
can usually figure that the same thing will apply to "the remaining
seven byvtes” of a double precision number.

A single precision number is stored in memory in the following
format:

LSB 258 MER EXP
A double precision number is stored in this manner:
L5B 658 588 45B 358 28R MEB BXP

In the above examples, MSB indicates the Most Significant Byte, 2SB is
the 2nd most Significant Byte, and so on to the Least Significant Byte
(LSB). EXP stands for the Exponent byte.

To decode a number in memory, start with the exponent byte. If
this byte contains zero, the number is zero regardless of what the
other byvtes may contain. Otherwise, take the number found in the
exponent byte and subtract 128 to get the actual exponent. Another way
to think of this is that the leftmost bit of the exponent byvte will be
set if the exponent is positive, or will egual zero if the exponent is
negative. The rightmost seven bits contain the actual exponent value,
which can be read "as is" for a positive exponent. If the exponent is
negative, the rightmost seven bits must be complemented, and then have
a value of one added, to produce the proper negative exponent. Iit's
easier to just subtract 128 decimal (80H) from the wvalue found in the
exponent byte. Note that if the exponent byte contains 128 decimal,
our exponent will be zero (which does NOT mean that the number is zero
- for that the exponent byte itself must be zero).

Next, look at the Most Significant Byte. If the leftmost bit of
that byte is set, the number is negative, but if it's a zero, the
number is positive (note that we are talking about the number itself
here, whereas before we were dealing with the sign of the exponent).
NMow that yvou know the sign of the number, treat the leftmost bit as if
it were set (a binary "1") and write down the bits of the MSB.

Page 23

TRS-80 ROM Routines Documented Chapter 2

Continue to write out the bits of the remaining bytes, until you have
written out the LSB. Place a decimal point to the left of the
resulting binary number. At this point, your number should be written
out in this format:

.1lbbbbbbb bbbbbbbb bbbbbbbb (...continue if Double Precision)
MSB 28B LSB (38B)

Again note that the first digit of the MSB (which contained the sign
bit) has been changed to a one.

Next, take the exponent value and move the decimal point that
many places. If the exponent was positive, move the decimal point
that number of places to the right, while a negative exponent moves
the decimal point to the left (in which case you'll have to add
leading zeros as reguired).

Let's back up just a bit. Suppose we had found the value 84H in
the exponent byte. . After subtracting the 80H offset, we wind up with
an exponent of +4. So, we would move the decimal point four places to
the right, like this:

lbbb.bbbb bbbbbbbb bbbbbbbb (.... f

If the value in the exponent byte had been 7BH, after subtracting 80H
we would have an exponent of -5, S50, our number would look 1like
this: ,

.000001bb bbbbbbbb bbbbbbbb bbbbb...

Now we have a binary number that we can convert to decimal. Oh,
joy! How in the heck do we do that when there's a decimal point
(excuse me, BINARY point) in the darn thing?

Simple enough. You probably already know how to convert the bits
on the left side of the decimal point. As an example, let's take the
binary number 10111001. If we write it out like this...

1 0 1 1 1 0 0 1
128 64 32 16 8 4 2 1

we can take the decimal values below each "1" in the binary number and
add them to come up with the decimal number. In this case,
128+32+16+8+1=185 decimal. The pattern is obvious - each time we move
left one digit that digit is "worth" twice as much (if we had a
nine-digit binary number, the leftmost digit would count for two times
128, or 256. A tenth digit would be the equivalent of 512 decimal,
and so on}. Notice that this also works in reverse - each digit to
the right is "worth" half the value of its neighbor to the left. This
gives us the key to decoding binary numbers that have a fractiocnal
part. Suppose we want to decode the binary number 10110.01101. Here's
how it's done:

6 . 0 1 1 0 1
1/4 1/8 1/16 1/32
.5 .25 .125 .0625 .03125

1 0 1
1s 8 4

B3 bt
i
bt
e
3]

TRS~-80 ROM Routines Documented Chapter 2

Note the pattern. Here we'd add 16+4+2+.25+.125+.03125 for a result
of 22.40625.

As an outlet to our masochistic tendencies, lets actually decode
a single precision number from memory. Using VARPTR on a
single-precision variable, we come up with a memory location. A PEEK
at that and the next three memory locations yields the following
values:

183 209 28 134
(L5B) (28B) (MSB) (EXP)

We know which byte is which (everything's in typical Z-80 reverse
orderj, so we start with the exponent. We subtract 128 from the wvalue
of 134 which gives us an exponent of +6. So far, so good.

Next, we write out the MSB as a binary number. 28 decimal is
00011100 binary. That first (leftmost) bit is a zero, so we know the
number is positive. We assign a 1 to that bit (we ALWAYS replace the
sign bit with a "1", remember?), giving us an MSB of 10011100. Now,
we convert the 288B and LSB. 209 decimal = 11010001 binary and 183
decimal = 10110111 binary. Putting them all together, with the
decimal point in front, gives us this:

.10011100 11010001 10110111

Now, let's see here. Our exponent was +6, so we'‘ll have to move the
decimal point six places to the right - which gives us this:

100111.00 11010001 10110111

On the left side of the (binary) point, we have 100111. That's easily
converted to 39 decimal. How about our fractional part? If vyou
followed the chart above, you can easily count off places to the right
of the decimal point. The first ten would look like this:

0 0 1 1 0 1 0 0 0 1
1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

If we add the values for the first ten digits, we get a value of
.204102, which when added to 39 gives us 39.2041 (approximately). The
actual number is 39.2048, so you can see that the number of bits we
use has a great effect on accuracy.

Well, that is a (relatively) painless explanation of the number
formats of the TRS-80 (I hope!). You may not know how to convert
numbers from one base to another by counting on your toes, but at
least you should have some idea of how the TRS-80 allocates memory for
variables. Usually, the math routines will take care of juggling the
numbers for vyou, and you'll probably seldom use numbers other than
integers in your assembly-language programs, anyway (and integers are
downright easy to understand, at least when compared to the other
formats). But as I said, it never hurts to know as much as possible
about why the electrons chase around the innards of your computer in
just a certain way.

Page 25

TRS-80 ROM Routines Documented Chapter 2

STRING VECTORS

String vectors? What are strings doing in the arithmetic portion
of this book? Well, in some respects the TRS-80 treats string
variables in the same manner as numeric variables. So we need to know
how strings are stored in memory.

The first thing we need to know is that the string itself may be
stored in high memory (just below any protected memory), or it may be
part of a BASIC program. That's not important right now. What IS
important is how the TRS-80 finds these strings when needed. It's
done by use of a three-byte STRING VECTOR, which is organized as
follows:

First byvte: Length of string (number of bytes)
Second byte: LSB of starting address of string
Third byte: MSB of starting address of string

Note that the information contained in the string vector (the starting
address of the string, and the length of the string) is sufficient to
determine the exact position of the string in memory. When the BASIC
VARPTR function is used on a string variable, the address returned is
that of the first byte of the string vector (the string length byte}.
Note that because only one byte is alloted for the length, the maximum
string length is limited to 255 characters.

The VARPTR address of a string is important in its own right.
This two-byte pointer to the string vector is used by all of the
string-handling functions. We'll cover these string functions in much
greater detail in chapter three of this book. For now, just remember
that for each string, there is a two-byte pointer (the VARPTR), which
points to the three-byte STRING VECTOR, of which the last two bytes
point to the string itself.

NUMBER TYPES

The TR5-80 uses a single digit as a number type indicator. This
digit is the number of bytes required to store a given type of number
(that is, 2 for an integer, 4 for a single-precision number, or 8 for
a double-precision number), or in the case of a string, the number of
bytes required for the string vector (3). The number type indicator
digit figures gquite prominently in all TRS-80 arithmetic operations.
The number type of the number currently being processed by the TRS-80
can be found in the NUMBER TYPE FLAG (or NTF) which is located at
40AFH. This flag is generally associated with the number currently
stored in the primary ACCUMULATOR. You will see many references to
the NTF among the following routines, so keep in mind that NTF stands
for NUMBER TYPE FLAG, and that it is located at 40AFH.

ARITHMETIC ACCUMULATORS
The two arithmetic accumulators in the TR5-80 memory are located

from 411DH to 4124H, and from 4127H to 412EH. Numbers are stored in
the accumulators during computations. The method of storage of a given

Page 28

TRS-80 ROM Routines Documented Chapter 2

number depends on its number type, and on which accumulator is being
used.

The primary accumulator - the one that 1is used in most
calculations, hereinafter referred to as ACCUM - 1is the one located
from 411DH to 4124H. Here is how the various number types are stored
in ACCUM:

ADDRESS INTEGER SINGLE DOUBLE STHING
411DH LSB
411EH 6558
411FH 58B
4120H 45B
41218 LSB LSB 358 VARPTE LSB
4122H MSB 25B 2SB VARPTR MSB
4123H MSB MSB
4124H EXP EXP

Note that storage for all number types except double-precision begins
at 4121H.

The second accumulator (hereinafter referred toc as ACCUM2) is the
one located from 4127H to 412EH. This accumulator is mostly used in
double~-precision arithmetic, but regardless of the precision, when
ACCUMZ is used the LSB of the number will be found at 4127H. The MSE
of the number will be at 4128H for an integer, while the exponent byte
will be found at 412AH or 412EH for a single or double precision
number respectively.

The byte just prior to the beginning of each of the accumulators
{411CH and 4126H) 1is used as an extension to the respective
accumulator during certain arithmetic operations. The byte at 4125H
is sometimes used to hold the sign of the result of certain arithmetic
operations.

The two arithmetic accumulators are not the only places where the

operands of a calculation can be stored. For example, an integer
might be placed in either the HL or the DE register pairs during
computations. A single precision number might have its four bytes

placed in the BC and DE register pairs, or it might be temporarily
placed on the stack. Multiplication and division operations may make
use of a working accumulator located at 414AH - 4151H.

Some of the TRS-80 ROM arithmetic routines can directly access a
single-precision number stored anywhere in memory - in this case the
HL register pair must contain the address of the LSB of the number.
This is indicated by the use of (HL) in the following routines, which
actually means the contents of the four bytes beginning with the
address pointed to by HL (that is, (HL), (HL+1), (HL+2), and (HL+3)).

ROM ROUTINES

Now that we've had some background regarding the wvarious number
formats and storage locations, we can examine the wvarious ROM
routines. One nice thing about the arithmetic routines is that ALL

Page 27

TRS-80 ROM Routines Documented Chapter 2

arithmetic routines are found in the same locations on both the Model
I and the Model III (and, of course, on the Model 4 when operated in
the "Model III mode"). You can use any of the following routines with
confidence, secure in the knowledge that the math routines seem to be
firmly entrenched in their present memory locations, at least for the
time being.

Please note that when a routine is said to work with "ANY"®
precision number, that means it will work with an integer, or a

single~ or double-precision number. It does NOT mean that it will
work with a string.

BASIC ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION ROUTINES

ADDRESS OPERATION PRECISIOHN

0BDZH ACCUM = DE + HL INTEGER

OBC7H ACCUM = DE -~ HL INTEGER

0BF2H ACCUM = DE * HL INTEGER

2490H ACCUM = DE / HL INTEGER

0716H ACCUM = BC:DE + ACCUM SINGLE

07138 ACCUM = BC:DE - ACCUM SINGLE

08478 ACCUM = BC:DE * ACCUM SINGLE

08a2H ACCUM = BC:DE / ACCUM SINGLE

0Cc77H ACCUM = ACCUM + ACCUMZ DOUBRLE

0C70H ACCUM = ACCUM - ACCUMZ DOUBLE

ODAlH ACCUM = ACCUM * ACCUM2Z2 DOUBLE

ODES5H ACCUM = ACCUM / ACCUM2 DOUBLE

0708H ACCUM = ACCUM + 0.5 SINGLE

0708BH ACCUM = (HL) + ACCUM SINGLE

07108 ACCUM = (HL) - ACCUM SINGLE

08%pH ACCUM = STACK / (HL) SINGLE

08A0H ACCUM = STACK / ACCUM SINGLE (see note below)

093EH ACCUM = ACCUM * 10 SINGLE

0E4DH ACCUM = ACCUM * 10 DOUBLE

OFOAR ACCUM = ACCUM * 10 SINGLE OR DOUBLE (see note
below)

08978 ACCUM = ACCUM / 10 SINGLE

0DDCH ACCUM = ACCUM / 10 DOUBLE

OF18H ACCUM = ACCUM / 10 SINGLE OR DOUBLE

The following two routines operate on the MANTISSA ONLY (exponent byte
ignored):

ACCUM + ACCUMZ DOUBLE
ACCUM - ACCUMZ DOUBLE

0D33H ACCUM
0D45H ACCUM

[}

The following register multiply routine Jjumps to the Bad Subscript
error routine 1if the vresult of the multiplication is greater than
FEFFH:

Page 28

TRS-80 ROM Routines Documented Chapter 2

0BAAH DE = BC * DE POSITIVE INTEGER

NOTE: Calling the multiply-by-ten routine at OF0AH results in an
immediate RETurn (without performing the indicated multiplication) if
the 2 flag is set upon entry. If this is not desirable, use OFOBH as
the entry point for this routine. Also, prior to the use of any of
the division routines (especially the one at 08A0H), be sure to read
the note at the end of the following section (covering the BASIC
arithmetic function routines).

BASIC ARITHMETIC FUNCTION ROUTINES

ADDRESS OPERATION PRECISION

0809H ACCUM = LOG (ACCUM) ANY (RESULT SINGLE)

09774 ACCUM = ABS (ACCUM) ANY

098AaH ACCUM (& HL) = SGN {(ACCUM) ANY (RESULT INTEGER)

0B26H ACCUM = PFIX (ACCUM) ANY

0B37H ACCUM = INT (ACCUM) ANY .

13E7H ACCUM = SQR (ACCUM) ANY (RESULT SINGLE)

1439H ACCUM = EXP (ACCUM) ANY (RESULT SINGLE)

14C9H ACCUM = RND (ACCUM) ANY (RESULT SINGLE - see note
below)

15418 ACCUM = (COS (ACCUM) ANY (RESULT SINGLE)

15474 ACCUM = SIN (ACCUM) ANY (RESULT SINGLE)

15A8H ACCUM = TAN (ACCUM} ANY (RESULT SINGLE)

15BDH ACCUM = ATN {(ACCUM) ANY {(RESULT BINGLE)

NOTE: Although the number in ACCUM may be any precision when using the
RND function (at 14C9H), it is immediately converted to an integer
upon entry. Therefore, an OV EBrror will result if the number is not
in the range -32768 to 32767.

The following is a partial listing of other available functions and
some alternate entry points for a few of the above functions:

01D3H RANDOM (CHANGE RANDOM NUMBER SEQUENCE!}

07784 ACCUM = 0 {ZERO EXPONENT) SINGLE OR DOUBLE

0982H ACCUM = -~ACCUM SINGLE

0B3DH ACCUM = INT {(ACCUM) SIHGLE

OB59H ACCUM = INT {(ACCUM) DOUBLE

0C5BH ACCUM = ABS (ACCUM; INTEGER

13F2Z2H ACCUM = STACK T ACCUM SINGLE (ACCUM WILL BE
CONVERTED T0O SINGLE
PRECISION-see note below)

13F5H ACCUM = STACK ? ACCUM SINGLE (ACCUM MUST BE SINGLE
- see note below)

13F7H ACCUM = BC:DE ? ACCUM SINGLE

14CCH ACCUM = RND (NUMBER IN HL} SINGLE

14F0H ACCUM = RND (0) SINGLE

The following two routines perform logical operations on register

on exit the LSB of the result is stored in

pairs HL and DE. However,
To obtain the

the L register and the MSB is stored in the A register.

Page 2%

TRS-80 ROM Routines Documented Chapter 2

complete result in the HL register pair the user should immediately
LD H,A wupon return from the routine.

HL OR DE INTEGER
HL AND DE INTEGER

25F7H A, L
25FDH A, L

o

NOTE: When any routine is used that takes one of its values from the
stack (such as the exponentation routines at 13F2H or 13F5H or the
division routine at 08AO0H), the value stored on the stack is expected
to be on the topmost two levels of the stack when the routine is
entered, with the RET address below this wvalue. For this reason,
these routines cannot be simply CALLed in the same manner as most of
the other routines mentioned here. 1Instead, if you wish to use one of
these routines you must first PUSH the RET address onto the stack,
then use the routine at 09A4H or some other method to get the reqguired
value onto the stack, and finally jump to the desired routine (don't
CALL 1it). Another way to accomplish this would be to set up a
subroutine, within which the proper value is placed onto the stack and
which terminates with a jump to the desired routine (instead of a RET
instruction). The following exponentation subroutine illustrates this
construct, and assumes that the base number is stored in the ACCUM in
single precision format on entry:

EXPON CALL 09a4H ;Move base number from ACCUM to stack
(code to place exponent in ACCUM goes here)
JP 13F2H8 :{or 13F5H)

The above subroutine may be CALLed and will properly return to the
caller most of the time. The one exception is something that all disk
system users should be aware of when using ANY of the exponentation
routines, or any of the other math routines that make use of the
non-integer division subroutine in the ROM. If your program runs
under a disk operating system and BASIC has not been initialized at
least once since power-up (or if BASIC's reserved RAM has been
overwritten or otherwise mucked up), use of one of these routines will
likely send your program off on a trip to a galaxy far, far away. The
reason is that when BASIC is initialized, a subroutine is moved from
the ROM to the reserved RAM at 4080H (see the above discussion on
4080H) . If this subroutine is not present and the ROM attempts to
make the CALL to 4080H (from the non-integer division subroutine),
almost anything can happen. Unless you are sure that this subroutine
at 4080H will always be present when your program is run, I suggest
that you include within your program initialization the following
segment of code, which does a block move of ROM locations 18F7H
through 1904H to RAM locations 4080H through 408DH:

Lb HL,18F7H
LD DE, 40808
LD BC,000EH
LDIR

CHANGING PRECISIONS OF NUMBERS

The following routines are all used in the process of converting a
number from one precision to another:

Page 30

TRS-80 ROM Routines Documented Chapter 2

ADDRESS OPERATION

OABAR ACCUM FROM SINGLE TO INTEGER (RESULT ALSO IN HL - see note
below) :

0ABI9H ACCUM FROM DOUBLE TO SINGLE

gAacCcCH ACCUM FROM INTEGER TO SINGLE

OAE3H ACCUM FROM SINGLE TO DOUBLE

0964H INTEGER IN A TO SINGLE (RESULT IN ACCUM - see note below)

O0ACFH INTEGER IN HL TO SINGLE (RESULT IN ACCUM)

2B0O5H NUMBER IN ACCUM TO INTEGER (RESULT ALSO IN DE, Z FLAG SET IF

NUMBER IN RANGE 0 TO OFFH).

NOTES: When the routine at 0964H is used to convert the number in the
A register to single precision format, the most significant bit of the
number 1s considered a sign bit. Therefore, if A contains 80H or
greater, the result will be a negative number. Also, note that. use of
the single precision to integer conversion routine at 0ABAH normally
generates an OV ERROR if the result is out of range. If you do not
want to jump to the BASIC error message in the event of an OV error,
follow this procedure: First, PUSH the desired return address (where
the routine should return if there is NOT an error) onto the stack,
then CALL 0OABEH. The instruction immediately following the CALL
should be the first instruction of your error-handling routine (this
is where the routine will return to if there IS an OV Error).

0ATFH ACCUM = CINT (ACCUM) {Useg routine at 0ABAH - see note
above)

0AB1H ACCUM = CSNG (ACCUM)

J0ADBH ACCUM = CDBL (ACCUM)

NUMBER TYPE FLAG MANIPULATION & TESTING

ADDRESS OPERATION

0020H TEST NTF. RST 20H calls routine (jumps to 4009H which in
turn jumps to 25DY9H). Operates by lcading A register with contents of
NTF, subtracting three, and then executing an OR A instruction. Flags
are set as you would normally expect from this operation, EXCEPT that
the C flag is always set UNLESS the number is double precision
(NTF=8).

0ASDH SET NTF FOR INTEGER (NTF=2)
0AECH SET NTF FOR DOUBLE PRECISION (NTF=8) USES BC.
0AEFH SET NTF FOR SINGLE PRECISION (NTF=4)

ARITHMETIC COMPARE ROUTIHNES
NOTE: 1In the following routines, when a subtract operation is shown,

it means that the flags in the Z~80 are set as if this subtraction has
taken place. However, on return both numbers will be unchanged.

Page 31

TRS-80 ROM Routines Documented Chapter 2

ADDRESS OPERATION

CHECK ACCUM FOR SIGN ROUTINES: The following three routines
return -1, 0, or +1 in the A register (flags set
accordingly) depending on the sign of the number in ACCUM.

0994H Check ACCUM for sign - ANY PRECISION (Reqguires NTF)

099RBH Check ACCUM for sign - INTEGER ONLY

0955H Check ACCUM for sign - SINGLE OR DOUBLE PRECISION

0018H POSITIVE INTEGER compare HL - DE (Z set if equal, C
set if HL < DE). RST 18H calls routine (0018H jumps to 4006H which in
turn jumps to 1C90H where routine is located). Used to compare BASIC
line numbers, etc.

0AOCH SINGLE PRECISION compare ACCUM -~ BC:DE

0A39H INTEGER compare HL. - DE

0An49H DOUBLE PRECISION compare ACCUM - (DE)

OA4FH DOUBLE PRECISICN compare ACCUM - ACCUMZ

0A78B DOUBLE PRECISION compare ACCUMZ - ACCUM

0SDFH COMPARE SIGN & SET SIGN BITS ACCUM compared to BC:DE.
Bit 7 of the MSB of both numbers is set (making both numbers
negative). Then the original Bit 7 (sign) bits of both numbers are
compared. If both numbers had the same sign on entry (both were

positive or both were negative) the %Z-80 sign flag will be set (M flag
set), otherwise the sign flag will be reset (P flag condition).

ARITHMETIC MOVE ROUTINES

ADDRESS OPERATION

09a4H PUSH ACCUM
Place the single precision value at 4121H on the stack (4121H-4122H
PUSHed first, then 4123H-4124H).

09B1H ACCUM = (HL)
Copy the single precision value stored at the address pointed to by HL
(four bytes) to 4121H.

09B4H ACCUM = BC:DE

Store the single precision value in BC:DE at 4121H (DE to 4121H-4122H,
BC to 4123H-4124H). Destroys value in BC:DE.

09BFH BC:DE = ACCUM

Load the single precision wvalue at 4121H into BC:DE (4121H-4122H to
DE, 4123H-4124H to BC).

09cz2H BC:DE = (HL)
Load the single precision value at the address pointed to by HL (four
bytes) into BC:DE (E=(HL), D=(HL+1), C=(HL+2), B=(HL+3)).

Page 32

TRS~-80 ROM Routines Documented Chapter 2

09CBH (HL) = ACCUM
Copy the single precision value at 4121H to the address pointed to by
HL {four bytes).

09CEH (HL) = (DE)
Copy the single precision value from the address pointed to by DE to
the address pointed to by HL (four bytes).

09D2H (DE} = (HL)
Copy value from the address pointed to by HL to the address pointed to
by DE (number of bytes moved = NTF).

09D3H (HL) = (DE)
Copy value from the address pointed to by DE to the address pointed to
by HL (number of bytes moved = NTF).

09D6H (HL) = (DE} Can be used for BLOCK MOVES (see note below)
Copy value from the address pointed toc by DE to the address pointed to
by HL (number of bytes moved in A register).

09D7H (HL) = (DE) Can be used for BLOCK MOVES (see note below)
Copy value from the address pointed to by DE to the address pointed to
by HL (number of bytes moved in B register).

09F4H ACCUM = ACCUMZ

Copy any precision value from ACCUM2 to ACCUM. ©Precision determined
by NTF.

09F7H ACCUM = (HL)

Copy any precision value from the address pointed to by HL to ACCUM
(precision and number of bytes moved determined by NTF).

09FCH ACCUMZ = ACCUM

Copy any precision value from ACCUM to ACCUM2. Precision determined
by NTF

09FFH (HL) = ACCUM

Copy any precision value from ACCUM to the address pointed to by HL
(precision and number of bytes moved determined by NTF).

0A9AH ACCUM = HL
Copy the integer value in HL to 4121H-4122H and set NTF for integer

{(NTF=2)

OAFBH B,C,D,E= 1A IF A = 0
If (and only if) the A register contains zero, copy the value in A to
the B, C, D, and E registers and return with Z flag set.

NOTES: Routines that copy any precision value will also copy string
VARPTRs (NTF=3), however, three bytes will be copied even though only
the first two are required. Also, the routines at 09D6H and 09D7H can
be used as general-purpose block move subroutines to move up to 256
bytes from one part of memory to another, by simply placing the
starting address of the block to be moved in DE, the destination
address in HL, and the number of bytes to be moved in the A or B
register (depending on which routine is used). While in most cases it

Page 33

TRS5-80 ROM Routines Documented Chapter 2

is easier and MUCH faster to use the %-80 block move instructions
(LDIR or LDDR), there may be an unusual circumstance that would
warrant using one of the above routines for block move purposes.

NUMERIC STRINGS AND I/0 ROUTINES

It is very fortunate that we do not have to enter numbers into the
TRS-80 in the format that it uses for numeric computations. Imagine
the difficulty of entering numbers in integer or single- or
double-precision formats! 1Instead, we can give the computer a string
of ASCII digits, and it will do the work of converting them to the
proper format, doing the arithmetic, and converting the result back to
an ASCII string so we can read it. The routines that follow are those
used in the ASCII string conversion process.

OE65H L.OAD DOUBLE PRECISION ASCII CONSTANT TO ACCUM :
Same as following routine (at 0OE6CH) except that number will always be
returned in double precision format.

0E6CH LOAD ASCII CONSTANT TO ACCUM

Evaluate a numeric string that begins at the address pointed to by the
HL register pair, store it in ACCUM and set the NTF. This routine
stops as soon as it encounters a character that is not part of the
number (it will return a value of zero if no valid numeric characters
are found). It will accept signed wvalues 1in Integer, Real or
Scientific Notation. Number returned will be in integer format if
possible, else single precision unless the string has over seven
digits (not including exponent), in which case number will be returned
as double precision.

OFATH DISPLAY "IN * AND POSITIVE INTEGER STORED IN HL

Used by BASIC to display messages such as "BREAK IN nnnnn", where
nnnnn is the BASIC line number stored in the HL register pair. Saves
HL, calls routine at 28A7H to display "IN ", then restores HL and
continues with routine at OFAFH (see details of that routine below,
and note warning about use of routine at 28A7H).

OFAFH DISPLAY POSITIVE INTEGER STORED IN HL

Converts the positive integer (such as a BASIC line number) stored in
HL to decimal ASCII character string, which is then output to device
specified by byte at 409CH (0FFH=Tape, 0=Video, l=Printer). Updates
cursor position (if output to video). This routine jumps to the
display routine at 28A7H (a description of that routine was given in
chapter one of this book) and thus may require that the associated
Disk BASIC links be "plugged”.

OFBDH PREPARE NUMBER IN ACCUM FOR DISPLAY (NUMERIC EDIT)

Non-formatted numeric edit routine. Converts number in ACCUM to
display format. On exit, ASCII string is stored in buffer located at
4130H-4149H, and HL register will point to last leading space (that
is, the space just before the first non-space character of the created
string). When positive integers greater than zero (such as BASIC line
numbers) are converted, the area from 41308 to 4136H is used, and the
string is stored right dJustified with leading spaces in locations
4130H to 4135H (4130H always contains a space character), while 4136H

Page 34

TRS-80 ROM Routines Documented Chapter 2

always contains a zero byte to terminate the string. Other number
types may be converted and stored differently within the buffer.

QFBEH FORMATTED NUMERIC EDIT
Formatted numeric edit routine (as used by PRINT USING). Entry
requirements are as follows:

B register -~ must equal number of whole digits (digits to left of
decimal point). Include commas (if desired) in count, but exclude
space and sign characters.

C register - must equal number of digits desired on right of
decimal point plus one (for the decimal point itself).

A register - flags. BEach bit has a meaning if set, as follows:

BIT MEANING (IP SET)

7 perform edit

6 include commas

5 asterisk fill

4 precede by dollar sign
3 force sign {(+ or =)

2 trailing sign

0 scientific notation

On exit, HL points to the leading space character just before the
start of the resulting string, and if the number was single- or
double-precision, DE points to end of resulting string plus one.

NOTE: The routines at OFBDH and OFBEH are the same routine. The
instruction at OFBDH clears the A register so no formatting is done.

1E46H LOAD POSITIVE INTEGER BYPRESSION IH DE

Same as following routine (at 1ES5AH) except that HL may also point to
any valid BASIC wvariable or expression, which must evaluate to a
number in range 0 to 32767 decimal (used to get argument of BASIC
CLEAR command). Note that +this routine assumes that BASIC is
operational. Results may be unpredictable if this is not the case,
particularly if a BASIC wvariable name (or something that could be
interpreted as such) is part of the string.

1E52H LOAD POSITIVE INTEGER CONSTANT IN DE

Evaluate the string at the address pointed to by the HL register pair
for a positive integer value (such as a BASIC line number), stopping
at the first non-numeric character. The result is returned in the DE
register pair. A value of zero is returned if no numeric value is
found. Maximum allowable number is 653529 decimal. NOTE: If this
routine is being used to obtain a BASIC line number, it may be CALLed
at 1E4FH. In this case, a period (2EH) character at (HL) will cause
the routine to return with the "current® BASIC line number (as stored
at 40ECH-40EDH).

21E3H ASSIGN STRING(S) TO BASIC VARIABLE(S)

This routine is part of the BASIC INPUT command routine, and can be
used to process input obtained from CALLing one of the keyboard input
routines at 1BB3H, 0361H, etc. On entry, BC must point to the first
character of a string that contains the variable name(s) (if more than
one variable name is used the names must be separated by commas, and a

Page 35

TRS-80 ROM Routines Documented Chapter 2

zero byte or colon must be placed after the last wvariable name). HL
must point to the byte just prior to the beginning of the input string
(this is where it is placed by the above-mentioned input routines -
note that this byte is altered by this routine), and the string may
contain input for more than one variable (items must be separated by
commas) . String must be terminated with zero byte. On exit, the
numbers or strings in the input will be assigned to the variables
listed in the string containing the variable names. Numeric or string
variables may be used, but only valid characters for numeric input may
be used with numeric variables (depending on how certain flags are
set, a "?REDO" message or an error will occur if this rule is

viclated. To force the "?REDO"™ message, make sure that memory
location 40DEH contains zerco, and that location 40A9H contains a
non-zero value. To determine if the "?REDO® message has occured,

prior to calling the routine load memory locations 40E6H-40E7H with
zZero. If the HL register pair contains zeroc on exit, then an error
has occured and the "?REDO" message has been printed). NOTE: For
proper operation, the input string should be in the BASIC input buffer
(as it will be if one of the input routines mentioned above is used)
when this routine is CALLed. See chapter one of this book for
information on the INPUT routine located at 21C9H. :

2337H EVALUATE EXPRESSION AT (HL)

Evaluate BASIC string expression (may include constants, BASIC
variables, BASIC functions, operators, etc.) and place result in ACCUM
(also set NTF). On entry, HL must point to first character of the

string to be evaluated. On exit, HL will point to the string
delimiter, which must be an acceptable BASIC expression terminator
(such as a =zero byte, a colon, a right parenthesis, etc.). NOTE:

This routine may be entered at 2335H, in which case the HL register
pair MUST point to a left parenthesis (which precedes the expression
to be evaluated) or a BASIC syntax error will result. This routine
assumes that BASIC is operational - result may be unpredictable if
this is not the case.

252CH EVALUATE PARENTHESIZED EXPRESSION

Evaluate any wvalid BASIC expression enclosed in parenthesis. Calls
previous routine (at 2335H to check for right parenthesis). A BASIC
syntax error will result if expression is not terminated with a right
parenthesis.

25408 LOAD ACCUM WITH VALUE OF BASIC VARIABLE

Get value of BASIC wvariable and put in ACCUM (also put precision of
variable in NTF). On entry, HL must point to first character of
variable name. On exit, HL will point to first character following
variable name.

260DH LOCATE OR CREATE A BASIC VARIABLE

This routine will locate the storage area in memory for an existing
BASIC wvariable, or will assign a storage area for the specified
variable if one does not presently exist. On entry, the HL register
pair must point to the first character of the variable name. On exit,
HL will point to the next character following the variable name, and
DE will contain the address of the wvariable storage area (same as
would be returned in BASIC VARPTR function). NOTE: 1If the variable
name does not contain a type declaration character (I, %, #, or $ as

Page 36

TRS-80 ROM Routines Documented Chapter 2

the final character of the variable name), the variable will be set to
the precision as defined by the variable type declaration table at
4101H through 411AH. This table is organized so that location 4101H
contains a the variable type flag for wvariables that begin with the
letter "A", 4102H contains the flag for variables that start with "B",
4103H contains the flag for variables starting with "C", and so on.
The flag digits are defined in the same manner as the NTF (integer =

2, string = 3, single = 4, double = 8). All table locations are set
to 4 (single precision) on power-up and when the BASIC RUN or CLEAR
commands are executed. The table values are altered through use of

the BASIC DEF commands (such as DEFINT, DEFSNG, DEFDBL, or DEFSTR).
2B02H LOAD INTEGER EXPRESSION IN DE

Same as routine at 1E46H (described above) except allows negative
argument. Number must evaluate within range -32768 to 32767.

Paae 37

TRS-80 ROM Routines Documented Chapter 3

CHAPTER THREE ~ STRINGS AND STRING-HANDLING ROUTINES

STRING STORAGE IN THE TRS-80

Most of us at one time or another have given at least a passing
glance to the appendix in the Level II BASIC reference manual entitled
"LEVEL II TRS-80 MEMORY MAP". This chart shows how memory is utilized
in the TRS-80. A portion of the map that is of particular interest to
us, at least for the purpose of understanding string storage in the
TRS-80, is reprinted (and expanded upon) here:

START OF USER MEMORY (The default addresses in non-disk systems
are as follows: Model I: 17129 decimal, 42E9 hex. Model III:
17383 decimal, 43E9 hex.)

PROGRAM TEXT - where your BASIC program resides in memory

SIMPLE VARIABLES - storage for non-array variables

ARRAYS - storage for array variables

k%% %% FREE MEMORY (Unused by BASIC) *%%%%

STACK - location of the stack while running BASIC

STRING SPACE -~ for storage of strings

MEMORY RESERVED AT POWER UP (by MEMORY SIZE? answer)
END OF ACTUAL MEMORY (that's all, folks!)

Now, what is interesting about the way memory is allocated is
that everything builds toward the free space. You load your BASIC
program, then the variables are placed above it. If you have a large
array and the define a new "simple" wvariable, ALL of the array
elements must be moved up to accomodate the addition (which will be
placed at the end of the present list of "simple" variables). Should
a new array be defined, it will be placed at the end of the array
variable list (in other words, in what is now "free memory").

If we start at the top of memory and work our way down, we have a
similar situation. First we find any "protected® memory that might
have been reserved in answer to the MEMORY SIZE? guestion, then just
below that is our string space. 50 bytes of string space are reserved
on power-up, and we may change that amount at any time by using a
"CLEAR n" statement, where n is the number of bytes of string space we
want to reserve. Finally we come to our stack, which is located just
below the string space and expands as necessary into “free memory®.
Note that if we change the reserved string space by using a CLEAR
statement, the stack is alsoc relocated. Should the top end of the
variables get toc close to the bottom of the stack (or vice-versa),
the BASIC umpire cries "foul!" and we get an Out of Memory Error (OM
ERROR) messsage.

- Whenever a "string" is created, it is normally stored in one of
two places. Usually, it is stored in the string space area near the
top of memory. The exception to this is when a string constant is
defined in a BASIC statement, either through a LET type of statement
(such as AS$="STRING"), or through a READ statement where the string
is contained in a DATA statement. 1In either case, the string vector
will point to the portion of the BASIC program that contains the
string, thus avoiding unnecessary duplication of strings in memory.

Page 38

TRS-80 ROM Routines Documented | Chapter 3

Strings that are not part of the BASIC program are stored in the
string space area, beginning as close to the top of memory as
possible. The last character of the first string to be defined will
be stored in the highest unprotected memory location. Each new string
to be created will be stored just below the last, until string space
is full, at which point a "garbage collection” will be performed in
order to get rid of unneeded strings. If this operation is unable to
free enough string space for the next string, an Out of String space
Error (0OS ERROR) results.

I hear you asking "But why should there be unneeded strings in
the string space?" The answer is that when a new value is assigned to
an existing string variable, the old string is not erased from memory
- it is simply abandoned by BASIC. Any new strings will still be
placed below the abandoned string, until a "garbage collection” is
performed.

Note that a string may be c¢reated without the programmer
realizing it or intending for it to happen. For example, the PRINT
statement actually creates a string of the items to be printed, then
outputs the string. BASIC string functions often create intermediate
strings, and the programmer may wish to alter his programming
techniques to avoid this. Here are two ways to achieve the same result
- namely, a count of the number of characters in A$ minus two:

PRINT LEN(MIDS(AS$,3)) PRINT LEN(AS$)-2

Both statements would print the same result, but the first would
create an extra string in the process (a string consisting of all but
the first two characters of AS).

If you have a BASIC program that uses a lot of string space
(string arrays, for example), you will want to try to avoid the
"garbage collection", or at least forestall it as long as possible.
The reason is that a "garbage collection" can take as long a several
MINUTES, during which the computer will appear to be "dead" (it will
not even respond to the BREAK key). Note that using the FRE(XS)
function automatically performs the "garbage collection" (X$ is the
"dummy"” variable name and may be replaced by any valid STRING variable
name) .

This "garbage collection" is one of the major factors that make
string sorts in BASIC seem unbearably slow. Consider the following
BASIC statements, which are commonly used to exchange two array
variables during a sort:

Z$=AS$ (X) :AS$ (X)=AS$ (X+1) :A$ (X+1)=17Z$

This simple exchange creates THREE new strings - first, a new string
(a duplicate of AS$(X)) is created for Z$. Then, a duplicate of
A$ (X+1) is created for AS(X). and finally, a duplicate of Z$ is
created for A$(X+1l). Note also that the original strings for each of
these three variables are abandoned during the exchange. At this rate
(three abandoned strings for each exchange!), it's easy to see why it
takes seemingly forever to sort even a few strings in BASIC. Smart
programmers have been known to write routines to switch the string

Page 39

TRS-80 ROM Routines Documented Chapter 3

pointers (instead of the strings themselves) in order to avoid this
problem.

If all of these strings are sitting up there in string space, how
does BASIC find the right one when you want the value of a certain one
(say X$, for example)? To answer this, remember that simple variables
are stored just above the BASIC program text. In the case of an
integer, single-precision, or double-precision variable, the two,
four, or eight bytes of the variable itself are stored here, but in
the case of a string, the three-byte STRING VECTOR (discussed in
chapter two of this book) is stored here. The last two bytes of the
string vector point to the string itself. Temporary string vectors
are also created for strings created by BASIC, and these are stored in
reserved memory, in the string work area starting at 40BSH.

The BASIC VARPTR function points to the first byte of the string
vector. The system uses a temporary VARPTR for each temporary. vector
- this two-byte pointer points to the three-byte string vector. You
may find this temporary VARPTR used in the ACCUM (4121H-4122H), among

other places.

This may seem a bit confusing, as we have a pointer that points
to a string vector, which is actually another pointer that points to
the string itself. Here's how it all fits together:

VARPTR (2 bytes) = STRING VECTOR =3 STRING

May be stored LSB >ems (3 bytes) stored LENGTH start of

in ACCUM, etc. MSB >— above BASIC program LSB e actual
or in reserved RAM MSB e string

In the remainder of this chapter, when we refer to the VARPTR we
will be talking about the two-byte pointer to the string vector, as
shown above. This string vector may not always be connected with an
actual BASIC string variable, but instead may be associated with a
"temporary" string that is not assigned to any BASIC variable. Thus,
in one sense, the use of "VARPTR" may be misleading. However, since
this VARPTR points to the first byte of the string vector, just as the
BASIC VARPTR function does for BASIC string variables, we will
continue to use the term VARPTR in this manner.

USING THE ROM STRING FUNCTIONS

You may find very limited use for the ROM string function calls,
for three reasons. First, unless you are writing a "hybrid" program
(part BASIC and part machine language), you probably will not have
string space reserved and properly maintained by the system. Since
the BASIC functions require that this string space be available, you
may have some difficulty getting the function calls to work properly
(don't be afraid to experiment, though). Second, in order to use the
ROM calls your strings will usually have to have the three-byte string
vectors (in the proper format) stored at some location, and vou will
have to supply the starting address of these vectors (in other words,
the VARPTR) to the ROM. And third, it is not as easy to use most of
the ROM string functions as it is the arithmetic functions. In many
cases you can't just CALL the routine, but instead you must set up the

Page 40

TRS-80 ROM Routines Documented Chapter 3

stack just so and then jump to the proper location. However , the
effort may be worth it in many cases, so we will show you how to use
the ROM string functions and let you decide.

When it comes to string handling (or any other type of
programming, for that matter), avoid using the ROM as a "crutch".
Think through what you are trying to do and decide if it is really
worth the effort to use the ROM. These routines are presented for
your information, but that does not mean that you can or should use
them in any given situation. Think - is there an easier way?

THE "FUDGE-IT" METHOD OF USING THE ROM

If you really want to make things easy on yourself, you may want
to fudge a bit and insert a little bit of BASIC into vyour
machine-language program. This method is particularly useful when you
are writing machine language code to be used with a BASIC program.

Here's how it works. Suppose, for example, that vour machine
language program needs the numeric value of the first three digits of
the number in AS. If you were writing in BASIC, you might use a
statement like this:

X=VAL(LEFTS$ (AS$,3))

Well, you can do almost the same thing in machine language. Here's
how: First, turn on your computer (or type NEW). Then enter ONLY the
portion of the statement to be evaluated (the part that would normally
be placed at the right side of the eqguals sign) as the first BASIC
line. For example, the above statement would be entered as

10 VAL(LEFTS (A$,3))

Note that this would normally cause a syntax error, since we aren't
assigning the result to a variable (we want the result available to
our machine language program, not BASIC). Now, enter the following
from the keyboard:

X=PEEK(16548)+PEEK(16549)%256+4 :FOR Y=X TO X+100 :PRINT PEEK(Y);
: NEXT

What you will see are the BASIC encoded bytes of your statement. You
are only interested in the bytes up to the first zero byte. For the
above example, they would look like this:

245 40 248 40 65 36 44 51 41 41 0

Carefully copy down these bytes, then insert them as a string
somewhere in your machine language program. You will probably have to
use several DEFB statements. Remember that the numbers are in
DECIMAL, not hex, and be sure to include the ending zero byte.

When it is time to evaluate this expression, just point HL to the

first byte of the string and CALL 2337H, the handy all-purpose
expression evaluator mentioned in chapter two of this book. On return

Page 41

TRS-80 ROM Routines Documented Chapter 3

from this routine, the result of the evaluation will be in the ACCUM,
with the NTF set accordingly. Note that as long as the syntax is
correct (meaning that you could put X= in front of the expression, or
X$= if the result is a string, and BASIC would accept it as a valid
statement), the result may be either numeric or string.

Those who need maximum execution speed are warned that the
"fudge-it® method is SLOW (in comparison to other methods) and
probably should not be used in repetitive loops if another method is
available.

STRING ROUTINES

The following routines are all available in both the Model I and
the Model III ROM, except for the Model III time and date routines.
Also, unless otherwise specified, on exit from these routines the
result is stored in the ACCUM and the NTF is set accordingly. If the
result is a string, the ACCUM will hold the VARPTR at locations 4121H
and 4122H.

For many of these routines, the entry specifications will state
that certain values must be PUSHed onto the stack. These must be
placed on the stack in the order specified. In other words, you may
see something like this: ©PUSH the return address on the stack, load
Rl with argument value, PUSH RR onto stack, then jump to nnnn. Here's
what you would do:

LD rr,nnnn :Load a register pair with return address
PUSH rr :PUSH the return address onto the stack

LD r,n ;Load A, B, D, or H with argument

PUSH rrx ¢:PUSH argument (AF, BC, DE, or HL) onto stack
JP nnnn ;Jump to routine entry point

Note that if an Rl register is specified, you may use A, B, D, or H,
while if R2 is specified you may use C, E, or L. You must then PUSH
the appropriate register pair.

Many of these routines save the HL register pair when called, and
restore HL upon return. In addition, the A register may contain the
contents of the memory location pointed to by HL upon return, that is,
A= (HL) . This is done primarily for the BASIC interpreter as HL
usually points to the next byte of the BASIC program to be executed,
but it may save you a few bytes. Contents of other registers should
be presumed destroyed by the routines. It is suggested that the user
test the action of specific routines wusing a monitor and/or
single~step debugging program (such as TASMON), both to ascertain the
entry and exit requirements of the routine, and to make sure that the
stack is being properly prepared prior to use of the routine.

STRING NTF (NUMBER TYPE FLAG) TEST

0AF4H Checks the contents of the NIF for a value of three
(indicating a string). Generates a Type Mismatch error if the NTF is
not set properly. Uses AF.

Page 42

TRS-80 ROM Routines Documented Chapter 3

STRING COMPARE ROUTINES

258CH Compare two strings. On entry, the VARPTR for string number
2 must be in the ACCUM, and the NTF=3. The stack must be set up as
follows: PUSH the return address on the stack, PUSH the VARPTR for
string number 1 on the stack. Then jump to 258CH (don't CALL). On
exit, the A register will contain FFH, 0, or 1 (zero and carry flags
set accordingly) depending on result of string number 1 compared to
string number 2. NOTE: This routine may also be used to obtain a
True-False result from a specific compare in the ACCUM. Follow the
above instructions, EXCEPT set up the stack as follows: PUSH the
return address on the stack, then PUSH the BC register pair (BC is
saved). Load Rl (first half any register pair) with an integer from
one through six that represents the desired compare, as follows:

1 - string 1 > string 2
2 - string 1 = string 2
3 - string 1 >= string 2
4 - string 1 < string 2
5 - string 1 <> string 2
6 - string 1 <= string 2

Then PUSH RR. Next, PUSH 25B8H onto the stack (load any register pair
with 25B8H and then push that register pair). Finally, PUSH the VARPTR
for string number 1 onto the stack. You may then Jjump to 258CH. On
exit, the result of the compare (-1 if True, 0 if False) will be
stored in single-precision format (NTF=4) in the ACCUM.

25A1H Compare two strings in memory. On entry, HL must point to
string number 1, while BC must point to string number two. The D and
E registers must contain the lengths (number of bytes) of strings 1
and 2 respectively. Then CALL 25A1H. On exit, the A register will
contain FFH, 0, or 1 (zero and carry flags set accordingly) depending
on result of string number 1 compared to string number 2.

STRING CONCATENATION

299CH Concatenate two strings. On entry, the stack must be
prepared as follows: PUSH the return address on the stack, PUSH BC,
and PUSH HL (BC and HL will be restored on exit from the routine).
The HL register pair must contain the VARPTR for string number 1, and
the ACCUM must contain the VARPTR for string number 2 (NTF must
contain value of 3). Then jump to 299CH (don't CALL). On exit, the
VARPTR to the string created by this routine will be found in the
ACCUM, with the NTF set to 3.

29C6H Move string to (DE) - use to concatenate strings. On entry,
DE must point to the location that the string(s) will be moved to, and
the VARPTR of the string to be moved must be PUSHed onto the stack.
Then CALL 29C6H. Note that several strings may be concatenated by
PUSHing the VARPTRs onto the stack in reverse order, then CALLing
29C6H once for each string to be concatenated. As an example, to
concatenate three strings, follow this seguence:

Page 43

TRS-80 ROM Routines Documented Chapter 3

LOAD DE with the starting address of the new (concatenated) string
PUSH VARPTR for string 3 onto the stack

PUSH VARPTR for string 2 onto the stack

PUSH VARPTR for string 1 onto the stack

CALL 29C6H -~ do this THREE times

The resulting string will be the equivalent of string 1 + string 2 +
string 3. Note that the VARPTRs must not be POPped back off of the
stack, as the routine at 29C8H takes care of this auvtomatically.

STRING MOVE ROUTINE

29C8H Move string to (DE). On entry, HL must contain the VARPTR
of the string to be moved, and DE must point to the location that the
string will be moved to. ALTERNATE ENTRY POINTS: To use the alternate
entry points, BC must point to the first character of the string to be
moved and DE must point to the location that the string will be moved
to. If the A register contains the length of the string to be moved
you may CALL 29CDH. If the L register contains the string length you
may instead CALL 29CEH. HNote that strings may also be moved using the
arithmetic move routines at 09D6H or 09D7H (see chapter two of this
book), or by using the Z-80 block move commands LDIR or LDDR (this is
the fastest method).

BASIC STRING FUNCTIONS

019EH INKEYS Create one-character string from keyboard input.
CALL O019EH to use. Routine will create a one-character string using
the contents of memory location 4099H. However, if 4099H contains
zero, the keyboard will be scanned and if a key is depressed, a string
will be created using the character input from the keyboard. If no
key is depressed, a null string (a string zero bytes in length) will
be created. On exit, the VARPTR to the string created by this routine
will be found in the ACCUM, with the NTF set to 3. NOTE: This routine
may be CALLed at 019DH, in which case a RST 10H will be the first
instruction executed (see chapter four of this book for details on RST
10H). Also, note that the kevboard is normally scanned during BASIC
program execution for the presence of the BREAK or shift-@ keys. If a
character other than one of those two is pressed, the character thus
entered is stored in location 4099H. Thus, a keystrcke received
between successive INKEYS$ calls is held "in the buffer"™ at 4099H, to
be used at the next execution of INKEYS.

27DFH FRE(x$) Get number of bytes free string space to ACCUM.

CALL 27DFH to use. On exit, the ACCUM will contain the number of
bytes of free string space remaining in the string storage area. This
value will be stored in single-precision format (NTF=4).

2836H STRS Convert number in ACCUM to string.

On entry, the number to be converted to a string must be in the ACCUM
with the NTF set appropriately. PUSH the return address onto the
stack, PUSH HL, and PUSH BC (HL and BC are restored on exit from the
routine). Then Jjump to 2836H (don't CALL). On exit, the VARPTR to

Page 44

TRS~80 ROM Routines Documented Chapter 3

the string created by this routine will be found in the ACCUM, with
the NTF set to 3.

2A03H LEN Get length (number of bytes) of a string to ACCUM.
On entry, the VARPTR of the string must be in the ACCUM, with the NTF
set to 3. You may then CALL 2A03H. On exit, the length of the string
will be stored (in integer precision) in the ACCUM, with the NTF set
to 2. NOTE: When programming in Assembly Language, it is generally
unnecessary to use this routine (unless you intend to perform further
calculations with the resulting wvalue, etc.), because the string
length is contained in the byte pointed to by the VARPTR.

2A0FH ASC Get ASCII value of first character of string to
ACCUM.

On entry, the VARPTR of the string must be in the ACCUM, with the NTF
set to 3. You may then CALL 2A0FH. On exit, the ASCII value of the
first character of the string will be stored (in integer precision) in
the ACCUM, with the NTF set to 2. NOTE: Keep in mind that the two
bytes following the byte pointed to by the VARPTR in turn point to the
beginning of the string. Therefore, use of this routine would be
considered highly inefficient programming, except when the resulting
value is to be further processed by the ROM arithmetic routines.

2A1FH CHRS Make a one-character string - ASCII value in ACCUM.
On entry, the ASCII value of the single character string must be
stored in the ACCUM in single-precision format (NTF must be set to 4).
PUSH the return address onto the stack, PUSH HL, and PUSH BC (HL and
BC are restored on exit from the routine). Then jump to 2A1FH (don't
CALL). On exit, the VARPTR to the string created by this routine will
be found in the ACCUM, with the NTF set to 3.

2A3DH STRINGS Make a string of multiple bytes of one character.

On entry, the ASCII value of the character used in the string must be
stored in the ACCUM in integer format (NTF must be set to 2). PUSH
the return address onto the stack, then locad R2 (last half of a
register pair) with the desired length of the string and PUSH RR.
Then jump to 2A3DH (don't CALL). On exit, the VARPTR to the string
created by this routine will be found in the ACCUM, with the NTF set
to 3. ALTERNATE ENTRY: PUSH the return address, then PUSH HL. If
the desired string length is already the second half of a register
pair other than HL, PUSH that register pair and jump to 2A3FH,
otherwise place the string length in the L register and jump to 2A3EH
(2A3EH contains a PUSH HL instruction).

2A64H LEFTS Make a string of the 1leftmost n characters of
string.

To use this routine, PUSH the return address onto the stack, then PUSH
the VARPTR of the string onto the stack. Load the B register with the
numeric argument (the number of characters to be retained at the left
side of the string), then jump to 2A64H (don't CALL). On exit, the
VARPTR to the string created by this routine will be found in the
ACCUM, with the NTF set to 3. See NOTE following RIGHT$ routine
{below).

Page 45

TRS-80 ROM Routines Documented Chapter 3

2A94H RIGHTS Make a string of the rightmost n characters of
string.

To use this routine, PUSH the return address onto the stack, then PUSH
the VARPTR of the string onto the stack. Load the B register with the
numeric argument (the number of characters to be retained at the right
side of the string), then jump to 2A94H (don't CALL). On exit, the
VARPTR to the string created by this routine will be found in the
ACCUM, with the NTF set to 3.

NOTE: 2A6lH and 2A91H are the "standard" entry points for LEFT$ and
RIGHTS, respectively. However, those entry points require extra
effort during setup. Specifically, the numeric argument must be
PUSHed onto the stack (from the last half of a register pair), and the
DE register pair must point to a left parenthesis (29H) character.
See also the routine at 2A68H (described below).

2AB3H MIDS Make a string from a portion of another string.

On entry to this routine, the A register must contain the position of
the first character to be retained (same as the first numeric argument
of the MIDS function), and the E register must contain the maximum
length of the new string (same as the optional second numeric argument
of MIDS) - use FFH if you do not wish to limit the length of the
string. The stack must be prepared as follows: PUSH the return
address onto the stack, then PUSH the VARPTR of the string on the
stack. Then jump to 2AB3H. On exit, the VARPTR to the string created
by this routine will be found in the ACCUM, with the NTF set to 3.
NOTE: The "standard" entry point to MID$ is 2A9AH, however that entry
point requires extra setup procedures. Also, an ALTERNATE ENTRY for
this routine may be used in this manner: After PUSHing the return
address, then PUSH HL, load HL with the VARPTR of the string, and jump
to 2AB4H. See also the routine at 2A68H (described below).

2AC5H VAL Get value of numeric string to ACCUM.

On entry, the VARPTR of the string must be in the ACCUM, with the NTF
set to 3. You may then CALL 2AC5H. On exit, the value of the number
represented in the string will be stored (in double-precision format)
in the ACCUM, with the NTF set to 8.

3030H TIMES (Model III only) Make a DATE + TIME string.

Creates a seventeen character date/time string of the format MO/DA/YR
HR:MN:SS. Executes a RST 10H instruction on entry to advance the
BASIC statement pointer (the HL register pair - see chapter four of

this book for details on RST 10H). Note that the entry point at 3030H
contains a jump to the actual start of the routine, which is found at
different locations depending on which version of the ROM is being
used. Therefore, if it is necessary to skip the RST 10H instruction,
one of the following subroutines may be used:

TIME LD HL, (3031H) TIME PUSH HL
INC HL LD HL, (3031H)
JP (HL) INC HL
(This routine destroys HL) INC HL
JP (HL)

The second code segment is two bytes longer but will preserve the
contents of the HL register pair, while the first segment destroys the

Page 46

TRS~-80 ROM Routines Documented Chapter 3

contents of HL. The desired code segment should be set up as a
subroutine and CALLed from the main portion of the program. However,
if the execution of the RST 10H statement IS desired, a simple CALL to
3030B will suffice. On exit, the VARPTR to the string created by this
routine will be found in the ACCUM, with the NTF set to 3. Alsc see
¥MODEL III TIME & DATE ROUTINES" below.

CREATING A STRING VECTOR

2865H CREATE A STRING VECTOR.

This routine will create a string vector for any string stored in
memory . Several options are available, depending on how the routine
is entered. Once a string vector has been created, the string may be
processed further through use of other string-handling routines.

One use of this routine is to create a string vector for a number
that has been converted to display format through use of the routines
at OFBDH or OFBEH. To convert a number in the ACCUM to a string,
first CALL OFBDH or OFBEH (see chapter two of this book for detailed
instructions for using those routines), then CALL 2865H. The VARPTR
to the resulting string vector will be found in the ACCUM (at
4121H-4122H).

To create a string wvector for any other string in memory, this
routine may be CALLed at 2865H PROVIDED that the following conditions
are met: First, the HL register pair must point to the first
character of the string. And second, the string MUST be terminated
with either a zero byte or a quotation mark (0 or 22H).

If the routine is called at 2866H or beyond, the HL register pair
must point to the memory location just BEFORE the first character of
the string. This 1is because 2865H contains a DEC HL instruction.
This entry point may be used to create a string vector for a string
that has been input from the keyboard using the routine at 0361H.

If you do not want the string to be terminated by a quotation
mark, or if you wish to define your own terminators, you may effect
these changes by using alternate entry points and by manipulating the
B or D registers, as follows:

Entry at 2868H: define your own terminator to replace the quotation
mark by loading its ASCII code into the B register. Or, load the B
register with zero if you do not wish the string to terminate with a
quotation mark but do not wish to define your own terminator.

Entry at 2869H: define your own terminator while still allowing a
guotation mark to function as a terminator by loading the ASCII value
of your terminator into either the B or D register. Or, you may
define two terminators of your own choosing by loading their ASCII
codes into both the B and D registers.

Note that whatever entry point is used, a zero byte will always

function as a terminator. Once you have loaded the appropriate
register(s) (if required), CALL the routine at the entry point of your

Page 47

TRS-80 ROM Routines Documented Chapter 3

choice. On exit from this routine, the VARPTR to the resulting string
vector will be found in the ACCUM at 4121H-4122H.

STORING STRINGS IN THE BASIC STRING STORAGE AREA

In the event that the assembly-language programmer wishes to use
the BASIC string storage area (located near the top of memory) to hold
a newly-created string, the following routines may prove useful.

28BFH MAKE ROOM FOR A STRING IN STRING STORAGE AREA.

This routine will make room for a string in the string storage area if
possible (will go to an Out of String space Error if not possible).
On entry, the A register must contain the length of the string to be
placed in storage. On exit, the DE register pair will point to the
location where the string should be stored (this routine does NOT
actually move the string, it simply indicates where it should be
placed). The pointer at 40D6H will be equal to DE minus one (this
pointer indicates the next usable string space location).

2857H CALLS 28BFH AND THEN CREATES STRING VECTOR.
This routine CALLs the above routine (at 28BFH) and then creates a
string vector for the new string. All of the entry and exit

conditions for the above routine apply, but in addition, on exit a
three-byte string vector for the new string will be stored at
40D3H-40D5H, and the HL register pair will serve as a VARPTR (it will
contain 40D3H). It may be desirable to move this vector to another
location in memory (easily done by using the routine at 09D2H, which
is described in chapter two of this book), in order to protect it for
future use.

PROGRAMMING HINT: Keep in mind that the routine at 260DH (described
in chapter two of this book) can be used to locate or create a BASIC
string variable. If you were to call the above routine (at 2857H),
then save HL on the stack, move your string to the space created, and
use the routine at 260DH to locate or create a variable, and then POP
HL and CALL 09D2H to move the string vector, you would effectively
have created or reassigned a BASIC string variable. This is a neat
way to pass your strings back to BASIC.

2A68H CREATE OR DUPLICATE STRING OR SUBSTRING.

This routine is used by LEFT$, MID$S, and RIGHTS to create new
substrings. It can also be used to duplicate existing strings in
memory or to create a permanent storage area for a temporary string.
On entry to this routine, the HL register pair must contain the string
VARPTR. To duplicate a string or move a temporary string to permanent
storage, load the BC register pair with FF0OH. Otherwise, load the B
register with the maximum length of the string, and load the C
register with the number of characters to ignore at the start of the
line. Note that the new string will not exceed the current string
length or the 1length placed in the B register, whichever is less.
However, if the C register contains a value other than zero, it is
possible that "garbage" characters may be included in the new string
unless precautions are taken to avoid this. For example, if the B
register contains a value of 25 decimal but the current string is only
10 characters long, the maximum string length will be 10 characters.

Page 48

TRS~80 ROM Routines Documented ’ Chapter 3

If a value of 5 is placed in the C register, the resulting string will
contain the last five characters of the original string plus the five
bytes following the original string in memory (which probably contain
"garbage" or parts of other strings). On exit from this routine, the
VARPTR for the resulting string is stored in the ACCUM, with the NTF
set to 3.

PROGRAMMING HINT: As with the previous routine (at 2857H), it would
be possible to use other ROM routines in conjunction with this routine
to create a BASIC variable. One suggested method would be to use the
routine at 260DH to locate or create the variable first, then PUSH DE
and use this routine (2A68H) to create the desired string. Then LD
HL,(4121H) to get the VARPTR in HL and POP DE to get the VARPTR for
the new variable. Then CALL 09D3H to move the string vector from (HL)
to (DE). This will assign the new string to a BASIC variable.

MODEL III TIME & DATE ROUTINES

In the Model I1I, the time and date are stored in a seven-byte
buffer starting at 4216H. A similar buffer is provided in the Model I
starting at 4040H, but it is not properly updated unless an Expansion
Interface is connected, and there are no time or date routines in the
Model I ROM (they are provided by the Model I DOS). 1In both models
the time is updated by an interrupt service routine, therefore, if
interrupts are disabled (such as during cassette or disk access) the
clock locations will not be properly updated, and will lose time. The
format of the time storage locations are as follows:

MODEL III MODEL I STORAGE FOR:
4216H 4040H 25 MS. INTERRUPT COUNTER
4217H 4041H SECONDS COUNTER
4218H 4042H MINUTES COUNTER
4219H 4043H HOURS COUNTER
421ARH 40441 YEARS COUNTER
421BH 4045H DAYS COUNTER
421CH 4046H MONTHS COUNTER

The Model III TIME$S routine at 3030H has been previously discussed
under "BASIC STRING FUNCTIONS". In addition, the following routines
are available in the Model III:

3033H CREATE DATE STRING IN EIGHT-BYTE BUFFER.

On entry, HL must point to an eight-byte buffer which will hold the
resulting string. On exit, HL will point to first location past the
end of the buffer, and the buffer itself will contain the date string
in the format MO/DA/YR. Uses AF,BC,DE,HL.

3036H CREATE TIME STRING IN EIGHT~-BYTE BUFFER.

On entry, HL must point to an eight-byte buffer which will hold the
resulting string. On exit, HL will point to first location past the
end of the buffer, and the buffer itself will contain the time string
in the format HR:MN:S8S. Uses AF,BC,DE,HL.

Page 49

TRS-80 ROM Routines Documented Chapter 4

CHAPTER FOUR -~ MISCELLANEOUS ROM ROUTINES

In the previous three chapters of this book, we have covered the
I/0 routines, the arithmetic routines, and the string-handling
routines. These routines occupy most of the ROM, but there is yet
another category that we should not overlook. Most of the routines in
this category have to do with system "housekeeping" - that is, the
running of BASIC programs, making sure that computer memory is
properly allocated, etc. There are also a few routines that don't fit
well into any category, so they wind up here. A few of these routines
are specific to only one Model of the TRS-80 (I or III), and those
will be indicated as such (all other routines are available on either
Model) .

Many of the routines in this chapter will be useful only to the
programmer who is writing a program designed to interact in some way
with BASIC. Examples of this might include a machine-language routine
called by the USR function, or a utility program that is intended to
simplify the creation or editing of a BASIC program. However, you may
find it profitable to study these routines even if you are not writing
this type of program, as they will give you many clues as to how the
computer manages memory, interprets BASIC programs, etc.

So, without further ado, here are the ROM routines that couldn't
be categorized, but which are unique and perhaps even useful.

THE RST (ReSTart) INSTRUCTIONS

There is a special type of CALL instruction available in Z-80
machine language. Whereas a normal CALL instruction requires three
bytes (one for the instruction itself and two for the address), the
RST instruction requires only one byte. The catch is that there are
only eight address in all of memory that can be called using the RST
instruction. These addresses are all in the lowest part of memory,
deeply embedded in the ROM. Fortunately, the designers of the TRS-80
decided to make the RST instructions somewhat more flexible, with the
result being that each of the RST addresses (with the exception of RST
0) contains a jump to user RAM. Starting at 4000H is a series of
three byte jump vectors that are normally set to jump to some routine
back in ROM. So, when you use a RST instruction, what happens is that
the program calls one of the RST locations in low ROM, then jumps to
RAM in the area of 4000H, then jumps back to ROM where the desired
routine is actually located. With this setup, the user could change
the vectors for any of the RST instructions, and thereby have the use
of a one-byte CALL for any machine language subroutine. The problem
in doing this 1is that BASIC makes heavy use of some of these
instructions, so you would do well to avoid changing these vectors
unless you are sure of what you are doing.

Some of the RST instructions have been previously described in
earlier chapters of this book. Here 1is a 1list of the eight RST
instructions, and the action taken by the TRS-80 when each is executed
(unless other indicated, all of the routines that follow are the same
on both the Model I and the Model III):

Page 50

}fzs

TRS~80 ROM Routines Documented Chapter 4

RST OH POWER-UP

Executing a RST 0 instruction will cause the computer to re-initialize
itself, in the same manner as 1f the electricity had just been applied
to the keyboard. Same effect as a jump to 0000H. Executes a DI
{(Disable Interrupts) and XOR A instruction, then jumps to 0674H in the
Model I or 3015H in the Model II1II, which continues with the cold start
initialization routine).

RST 8H JUMP T0 4000H, then JUMP TO 1CY%cH

1C96H -~ This routine 1is wused by BASIC to check for an expected
character - if that character is not present, a Jjump is taken to the
syntax error routine. An expected character is one that must be

present to preserve proper syntax. An example of this would be the
semicolon in the following BASIC statement:

INPUT "WHAT IS YOUR NAME"; AS
after BASIC has processed (in other words, output to video) the prompt

string, the next character following MUST be a semicolon. The code in
ROM that performs this check looks like this:

21Db3 CF RST 08H

21D4 3B DEFB Tet

21D5 ..., {continue with INPUT subroutine)
This is what happens when the RST 8 instruction is executed: If the

byte pointed to by the HL register pair (which points .o the next byte
of the BASIC program) is NOT the same as the byte that follows the RST
8 instruction {(a semicolcon in the above example), a syntax ervor
results. However, if the bytes match, the return address (at the top
of the stack, which presently points to the DEFB instruction) is
incremented by one (so that the subroutine will return to the
instruction FOLLOWING the DEFB instruction). A jump is then taken to
1D78H, which 1is the location of the routine called by the RST 10H
instruction, in order to advance the BASIC pointer (the HL register
pair) to the next character of the BASIC program, after skipping space
characters as explained below. In the above example, &t the
completion of the call to RST 8, return will be to 21D5H, and the HL
registey pair will point to the "A" in the variable name "AS". Uses
AF , HL.

RST 10H JUMP TC 4003H, then JUMP TC 1D78H

1D78H - Advances HL register pair to point to the next character of a
BASIC program. During a run of a BASIC program, the HL register pair
normally points to the next byte of the BASIC program to be executed.
The RST 10H instruction causes HL to be incremented, and if HL then
points to a space character (20H) or a linefeed character (0AH), the
process 1is repeated until HL points to some character other than a
space or linefeed. On return, if HL points to a colon (3AH) or a zero
byte (either of which are a valid BASIC statement terminator), the Z

lag will be set. If the character is numeric (0 through 8

represented in ASCII by 30H through 39H), the C flag will be set. If,
on the other hand, the character pointed to by HL is NOT numeric, a
colon, or a zero byte, then the C and Z flags will both be reset.
Uses AF,HL.

Page 51

F

TR5~-80 ROM Routines Documented Chapter 4

RST 18H JUMP TO 4006H, then JUMP TO 1C90H

Compare HL register pair to DE register pair. Both register pairs are
assumed to hold 16 bit unsigned (positive) integers (in the range 0 -
65535 decimal). Used by BASIC to compare program line numbers. On
exit, the 7 flag is set if HL is equal to DE, while the C flag is set
if DE is greater than HL. Uses AF.

RST 20H JUMP TO 4009H, then JUMP TO 25D9H
Test the NTF (Number Type Flag) at 40AFH., On return, Zz flag is set if

string, M set if integer, P and C set if single precision, P set and C
reset (NC) if double precision. Uses AF.

RST 28H JUMP TO 400CH
Break key vector. In non-disk systems 400CH contains a RET
instruction. In a disk system this vector is used for DOS overlay

requests (Bit 7 of the A register is set on entry if DOS overlay). In
addition, the following code is found at the end of the ROM keyboard
driver routine:

MODEL I: MODEL IIXI: MODEL 4:

04538 3100H or 344AH 33FCH FEOL Ccp 0l1H : 1 is BREAK key
455H 3102H or 344CH 33FEH CO RET NZ : Return if not BREAK
0456H 3103H or 344DH 33FFH EF RST 28H ; Call C028H

0457H 3104H or 344EH 3400H C9 RET ¢ Then return

The above code allows the DOS to intercept the BREAK key as long as
the ROM kevboard driver is in use. It also permits the programmer to
disable the BREAK key completely, by modifyving the contents of this
vector. For example, the BASIC statements

POKE 16396, 175 : POKE 16397, 201

will disable the BREAK key. To re-enable, simply restore the original
contents of this vector (under non-disk BASIC, use the statement POKE
16396, 201).

RST 30H JUMP TO 400FH
DEBUG entry point under DOS. In non-disk systems 400FH contains a RET
instruction.

RST 38H JUMP TO 4012H

Under a non-disk system on the Model I, 4012H contains an EI (Enable
Interrupts) instruction, followed by a RET instruction at 4013H.
Under a Model I disk system, 4012H contains a Jump to the DOS
Interrupt Service Routine. On the Model IIX, 4012H contains a JUMP TO
3018H, the Maskable Interrupt Handler routine, which jumps to various
interrupt service routines depending on the bits set at input port
EOH. Port EOH is the Interrupt Request Mask on the Model III, and an
input from this port indicates (according to which bits are set) the
last device to generate an interrupt. Jumps are then directed as
follows:

Page 52

TRS-80 ROM Routines Documented Chapter 4

BIT SET: JUMPS TO: REMARKS:

0 3365H Part of 1500 baud cassette read routine
1 3369H Part of 1500 baud cassette read routine
2 40468 4046H = Jp 3529H Cursor blink routine
3 403DH 403DH = JP 35FAH "RET" instruction

4 4206H 4206H = JP 35FAH "RET" instruction

5 4209H 4209H = JP 35FAH "RET" instruction

& 404081 4040H = JPp 35PFPAH “RETY instruction

7 4043H 4043H = JP 35FAH "RETY instruction

If more than one bit is set, the lowest bit number takes priority. If
one of bits 2 - 7 are set, a jump is made to reserved RAM and then
from there back to ROM. Prior to doing that, ALL register pairs
(AF,BC,DE,HL,IX,IY) are PUSHed onto the stack, and are restored when
the interrupt vroutine RETurns. The Jjumps from the reserved _.M
vectors shown above (to 3529H or 35FAH) may be changed on a disk~based
system by the DOS.

MISCELLANEOUS ROM ROUTINES

Although it would be handy if the following list included all of
the ROM routines that have not yet been covered in this series, it's
probably safe to assume that I've missed a few. If you know of any
that have been missed, why not write and let me know about them?
Perhaps they will appear in a future edition of this book.

The routines that follow are varied, so scan through the list -
you just may find the one you need. Note that all routines are the
same on both the Model I and the Model III, unless otherwise
specified.

000BH RESOLVE RELOCATION ADDRESS

POP HL followed by JP (HL}. Same as RET instruction except leaves
return address in HL. Thus, a relocatable program can CALL 000BH, and
upon return, the HL register pair will contain the current address of

the Program Counter. In this way, a program can "find" itself in
memory.

000DH DISK BOOTSTRAP LOADER

Model I: JUMP TO 069FH. Model III: JUMP TO 3012H. Does a

"warm® system reboot, in that it reloads and executes the Disk
Operating System but does not re-initialize all system pointers, etc.
Pt

first.

00604 TIME DELAY LOOP

On entry, the value in the BC register pair determines the amount of
delay. Shortest delay occurs when BC=1l, longest delay ({(about one
second) occurs when BC=0 (in this case 65536 delay loops are performed
by the routine. The next longest delay would occur when using a value
of FFFFH). ©Note that the delay is very slightly longer in the Model
III - this is due to the addition of an extra instruction in the delay
loop, for the purpose of (slightly over-) compensating for the faster
clock speed of the Model III. In the Model I, each count of BC
produces approximately a 14.6555 microsecond delay, while in the Model
ITITI the time for each count is 14.7964 microseconds. To put it in

Page 53

TRS5-80 ROM Routines Documented Chapter 4

more simple terms, for any given delay value in BC, the Model III will
take about 1% more time to complete the loop. For very short delays,
keep in mind that a minimal amount of time is also required to CALL
the routine. Uses AF,BC.

0066H NMI RESET

Non-Maskable Interrupt routine. Jumps here when the RESET button is
pressed, or when a HALT instruction is encountered (provided that Z-80
microprocessor is set to Interrupt Mode 0). Different actions are
taken by this routine in the different Models. 1In the Model I, a test
is made to determine if a disk controller is present, and if so a jump
is taken to the power-up sequence at 0000H, otherwise the routine
jumps to the BASIC re-entry point at 06CCH (see description of that
routine below). In the Model III a jump is taken to 303%H, where
input port E4H is tested to see if bit 5 is set (interrupt from disk
system present), and if not a jump is taken to a RAM vector at 4049H,
which normally contains a RST 0 instruction. If a disk interrupt is
present (bit 5 is set), the program loops until bit 5 of port E4H is
reset and then jumps to 0000H. Note that if the vector at 404%H were
changed it would be possible to direct the Model III to Jjump to
something other than the power-up sequence when the RESET button is
pressed in a non-disk system. Since the memory locations from 404AH to
407FH are unused in a non-disk system, it would even be possible to
insert a short program starting at 4049H to handle the RESET button.
For example, if the instructions LD BC,lA18H followed by JP 19AEH
were placed in this area, depressing RESET would return the non-disk
user to the BASIC "READY"™ prompt (as in the Model I}!

00728 JUMPp TO 06CCH
See routine at 06CCH for further details.

0754 (ALMOST) COLD START FOR NON-DISK SYSTEMS

A JUMP to this location will bring up the power-up sequence for Level
II/Model III (non-disk) BASIC, regardless of whether a disk system is
connected. However, not all system vectors are reset from this
routine, so caution 1is in order if attempting to use this entry
point.

06CCH MODEL I RETURN TO BASIC "READY®

This is the best re-entry point to BASIC on the Model I, but
unfortunately, on the Model III 06CCH 1is part of the BASIC LIST
command. See the next two routines {at 19AEH and 1A19H) for more
information.

19AEH ALTERNATE ENTRY TO BASIC "READY"

To use this routine, load the BC register pair with 1A18H, then JUMP
to 19AEH. This will work with both the Model I and the Model III, and
does not return an invalid "Out of Memory Error" message (see next
routine at 1A19H).

1A19H "OFFICIAL® RETURN TO BASIC "READY"

This is the entry point sanctioned by Radio Shack for a return the the
BASIC "READY" prompt. However, the disadvantage of using this entry
is that it will often return an %"Out of Memory Error" message in
response to the next command typed in from the keyboard, even though
an "out of memory"” condition does not exist. Model I programmers have

Page 54

TRS-80 ROM Routines Documented Chapter 4

often substituted 06CCH or 0072H as alternate entry points, but as
mentioned above, these will not work with the Model III. The use of
the routine at 19AEH is recommended (see above for details on this
routine).

1A7EH PROCESS INPUT FROM "READY" PROMPT

This is the beginning of the section of ROM that acts upon keyboard
input from the "READY" prompt. At this entry point, it is assumed
that the HL register pair points to the memory location just prior to
the beginning of the buffer containing the input to be processed, and
that if the C flag is set, the computer should return to the READY
prompt without acting upon the input (these assumptions are based on
the fact that the ROM has just CALLed the keyboard input routine at
0361H, and if the C flag is set it indicates that the BREAK key was
pressed). The input will be compressed (BASIC reserved words will be
compressed to one-byte tokens), and if the input began with a line
number, the line will be inserted into the resident BASIC program
(otherwise the input will be directly executed). There are several
possible entry points to this routine, as presented in this
disassembly of a short portion of the ROM:

1A7B CD6103 CALL 36l1H ;This gets keyboard input

1a7E DA331A JP C,1A33H :If "BREAK” pressed, go to "READYT
1481 D7 RST 10H :Now HL points to start of input
1a82 3C INC A : and C flag is set if input

1A83 3D DEC A s started with line number

1A84 CA331a JP 7,lA33H :If first byte = 0, go to "READY"
1A87 PS5 PUSH AF :Save AF on stack

1AB8 CD3AlE CALL 1E52H :Get line number in DE

oo {code continues at 1ABBH}
Note that by anticipating the various conditions expected by the ROM,
we can JUMP to this routine at any of several points. For example, if
DE contained a line number, HL pointed to the start of some text we
wanted to put into a line, and the C flag was set and AF pushed onto
the stack, we could jump to 1A8BH and the line would be entered into
our BASIC program. There are a couple of problems to be aware of,
however. First, if vou do make use of the entry point at 1A8BH, vou
should be aware that 1f there 1s more than one space character (20H)
immediately prior to the text pointed to by HL, all but one of these
space characters will be tacked onto the beginning of the text. To
avoid this, jump to 1A98H instead of 1A8BH. The other problem is that
this routine always returns to the BASIC ">" prompt (the YREADY"
state), thus 1t cannot be used as a subroutine that is CALLed from
your program - unless you are willing to resort to some "tricky”
programming. Assuming that a new line was entered into the resident
BASIC program, the last five instructions of this routine look like
this:

1RES CDFClA CALL 1AFCH ;Adjust BASIC line pointers
1AEC CDB541 CALL 41B5H :DOS vector
1AEF CD5DIB CALL 1B5DH : "CLEAR" (adjusts pointers)
1AF2 (CDB84l1 CALL 41B8H ; DOS vector
1A¥FS5 (C3331a JP 1A33H :Back to READY (">" prompt)

Page 55

TRS-80 ROM Routines Documented Chapter 4

Note that there are two DOS vectors that could be temporarily
intercepted. If you had CALLed the routine, and one of the vectors
contained a POP rr instruction (to get rid of the return address in
ROM), followed by a RET instruction, you could return to your program
(assuming that the return address to your program was up next on the
stack). Just be sure to restore the DOS vector before you exit your
program, and remember that this won't work if the line is interpreted
as a direct statement, instead of as a line to be added to the BASIC
program, This is one of the key routines of the BASIC interpreter,
and certainly merits close examination by anyone attempting to
understand how BASIC operates.

1AF8H ADJUST BASIC POINTERS

As stored in memory, the first two bytes of each line of a BASIC
program point to the first byte of the following BASIC program line.
When a program has been CLOADed, or after editing, these pointers may
not be correct. This routine adjusts all of these forward pointers so
that they correctly point to the beginning of the next line, starting
with the first line of the program. Uses AF,DE,HL.

1AFCH ADJUST BASIC POINTERS STARTING AT (DE)

Same as above routine (at 1AF8H), except begins adjusting pointers at
line pointed to by the DE register pair (DE must point to the first
byte of a BASIC line). Used when a line has been edited, and it is
known that all pointers prior to the beginning of that line are still
correct,

iBzcH SEARCH FOR A MATCHING BASIC LINE NUMBER

On entry to this routine, the DE register pair must contain the line
number for which the search is to be made. On exit, the C flag will
be set if a match was found. The 7 flag will be set if a match was
found OR the end of the program was reached without finding a 1line
number larger than the one being searched for. If a line with a
matching line number OR a line number larger than the one being
searched for was found, the BC register pair will point to the start
of that line, and the HL register pair will point to the start of the
next line following. If all of the line numbers in the program were
smaller than the one being searched for, then both the HL and BC
registers will point to the byte immediately following the last byte
of the last line of the program (the second of the three zero byvtes
at the end of the program, which is the location where a new line
should begin if you are performing this search in order to add a line
to the BASIC program). Uses AF,BC,HL (DE still holds line number on
exity,

1B4DH NEW

This routine will wipe out the BASIC program currently in memory by
resetting the pointers assocciated with it. Alternate entry points are
1B4AH (also clears video display) and 1B49H (same as 1B4AH except that
the 7z flag must be set upon entry, otherwise a return is made to the
calling program immediately, without resetting any of the pointers).
This following routine (at 1B61H) is a part of this routine, and the
WARNING it carries in regard to the Stack Pointer also applies to this

routine,

Page 56

TRS-80 ROM Routines Documented Chapter 4

1B61H CLEAR ALIL VARIABLES

This routine 1is CALLed whenever the length of the BASIC program is
changed in any way, such as by adding, deleting, or editing program
lines. All variables are cleared, the associated pointers are reset,
and various other flags and pointers are reset. Entry at 1B61H saves
the HL register pair, but if the routine is entered at 1B5DH, the HL
register pair will point to the start of the BASIC program minus one
on exit {(also, on the Model III the 1B5DH entry point will unprotect
the video display). WARNING: This routine resets the Stack Pointer
origin to the address pointed to by the contents of 40A0H-40A1H (the
"start of string space” pointer) minus two. The RET address is
preserved but all other items on the stack will be lost unless steps
are taken in order to preserve the stack.

1iBCOH COMPRESS BASIC LINE

BASIC stores all reserved words as one-byte tokens. This routine will
take a line of text and compress it so that all BASIC reserved words
are tokenized. On entry, HL must point to the first byte of the text
to be encoded (text must be terminated with a zero bvtel. On exit,
the resulting encoded statement will be stored in the input buffer,
beginning at the location pointed to by 40A7H-40A8H minus two. The HL
register pair will point to the start of the encoded statement minus
one, and this location will contain a colon (33AH) character. Three
zero bytes will be placed at the end of the encoded statement, and the
DE register pair will point to the last of these zero bytes. The BC
register pair will contain the actual length of the encoded statement
(not counting the beginning colon or ending zero bytes), plus five
(this is to allow room for a forward line pointer, a line number, and
an ending zero byte if the 1line is to be inserted into a BASIC
program) . In addition to compressing BASIC reserved words, this
routine converts all other alphabetic characters in the line to
uppercase, except for those within literal strings that are enclosed
by quotation marks. Uses AF,BC,DE,HL.

1D91H RESTORE

Resets the DATA pointer (at 40FFH) to point to the start of the BASIC
program, so that the next time a BASIC READ statement is executed, the
first DATA item in the program will be read. Uses DE.

1DF7H TRON
Enables the BASIC trace function by setting the trace flag at 411BH to
a non-zero value. Uses AF.

1DF8H TROFF
Disables the BASIC trace function by setting the trace flag at 411BH
to zero. Uses AF.

1E3DH CHECK FOR UPPERCASE ALPHARETIC CHARACTER AT (HL)

If the byte pointed to by the HL register pair contains the ASCII code
for an uppercase letter of the alphabet (A-%Z), the C flag will not be
set, otherwise the C flag will be set on return. The reason that this
routine is not designed to recognize lowercase characters is that any
lowercase letters found in a BASIC line that are important to the
BASIC interpreter (such as wvariable names) are converted to uppercase
by the compression routine at 1BCOH. Uses AF.

Page 57

TRS~-80 ROM Routines Documented Chapter 4

1E83H CLEAR n

Reserves a number of bytes of memory for string storage (resets the
"start of string space" pointer at 40A0H), then jumps to the CLEAR
routine at 1B61H (see above for details). On entry, the DE register
pair must contain the number of bytes of string space to be reserved.

1F07H INCREMENT HL (IF NECESSARY) UNTIL (HL)=0

Used by BASIC to advance the program pointer (HL register pair) to the
end of the BASIC line (to skip REM statements or ELSE clauses that are
not executed). On entry, if HL points to a zero byte no action is
taken, otherwise HL is incremented until it does point to a zero byte.
Uses AF,BC,DE,HL.

1F21H LET

On entry, HL must point to the first character of a string which
consists of a valid variable name, followed by a D5H byte (the BASIC
= function), followed by a valid BASIC expression (see the details
for the "Fudge-It" method in part three of this series for details on
how to encode the expression - note that the method used there to
encode the expression could also be used here to encode the entire LET
string). On exit, the expression will have been evaluated and the
result assigned to the indicated BASIC variable. ALTERNATE ENTRY
POINTS: If the wvariable that 1is to receive the new value has
previously been located (through a CALL 260DH instruction, for
example) you may wish to use one of the following alternate entry
points (expected entry conditions are shown for each):

1F24H DE=address of variable, HL --> D5H byte ("=%).
1F26H DE=address of variable, HL --> first byte of expression.
1¥27H HL=address of variable, DE --> first byte of expression.

2587H JUMP TO ((HL))
Loads the HL register pair with the address pointed to by HL on entry,
then executes a JP (HL) instruction.

2608H DIM

Dimension one or more BASIC variables. On entry, HL must point to the
first character of a string which contains one or more variable names
and desired dimensions (same syntax as would be required immediately
following a BASIC DIM statement). String must be terminated with a
zerc byte or colon.

27D4H GET AMQUNT OF FREE MEMORY TO ACCUM

Used by MEM and FRE(x) functions. On entry, the NTF at 40AFH must NOT
be set to 3 (string), but it may be set to any other precision or may
contain zero. On exit, the number of bytes of remaining free memory
will be stored in the ACCUM, in single-precision format (NTF=4). Uses
AF ,DE,HL.

27¥5H BOS
Gets the position of the cursor on the current line being output to
video from location 40A6H (value will be in range 0 - 63), and stores

in the ACCUM in integer format (NTF=2}. Uses AF,HL.

Page 58

TRS-80 ROM Routines Documented Chapter 4

27FER USR

Yes, it's +true - the USR function can be CALLed from a machine
language program, just like any other BASIC function. Of course, it
would be a highly inefficient programming method, but it could be
done, There's even an alternate entry point for non-disk users that
will save HL: 2802H. While this information may be next to useless in
all but the strangest circumstances, it serves to point ocut that the
USR function is, after all, treated like any other BASIC function by
the BASIC interpreter. This is important, because it shows how we can
pass arguments to and from BASIC. For one thing, whatever you place
within the parenthesis as the argument is evaluated by the routine at
252CH prior to exiting to your machine-language routine. This means
that the argument can be numeric (any precision) or string, and that
the result of the evaluated expression will be stored in the ACCUM,
with the NTF set appropriately. Radio Shack says that you must CALL
0A7FH to recover the argument, but as you know from reading part two
of this series, all that the routine at 0A7FH does is to change the
number in the ACCUM to an integer (don't use it on string arguments!).
Similarly, R.S. says that we must jump to O0A9AH on return if we wish
to pass a value back to basic. But, as you probably realize by now,
that's only true if the number you wish to pass back to BASIC is
stored in the HL register pair. If the value you wish to pass back is
already in the ACCUM, with the NTF properly set, you need only RETurn.
Note that nothing prevents taking in a number from BASIC and passing
back a string, or vise-versa, provided that you use the proper
variable tyvpes at each end. It should be clear from the above that
you are NOT limited to passing integers only. So, use your USR call
more effectively! PROGRAMMING NOTE: When using a string variable as
the argument of a USR function call, note that when control is passed
to the USR routine the ACCUM will contain the VARPTR to the original
variable (or to a temporary variable if a complex string expression
was used as an argument). It is suggested that the programmer
immediately CALL OAF4H to check the NTF for a string, then LD BC,FF00H
and CALL 2A68H to duplicate and/or reserve string space for the string
before attempting to manipulate it. See the routine at 2A68H (in the
previous chapter of this book) for more information.

2828H CHECK FOR ILLEGAL DIRECT ERROR

Checks the current BASIC line number (stored at 40A2H-40A3H) for a
value of FFFFH, which indicates that commands are being executed from
the direct mode (in which case the BASIC statements currently being
executed are stored in the BASIC input buffer, so it is not available
to receive input). If this is the case an Illegal Direct error exists
and a jump to the error routine is taken, otherwise returns to caller.
Uses AF.

2B7EH EXPAND COMPRESSED BASIC LINE

After a BASIC line has been compressed, this routine may be used to
expand it back into a line of text, so that it can be LISTed, EDITed,
etc. On entry, HL must point to the first byte of compressed text in
the line (that is, the first byte following the forward pointer and
line number). The line will be decoded and the result placed in the
BASIC text buffer until a zero byvte is encountered in the line (the
starting address of the buffer is stored at 40a7H-40A8H). The
expanded line will be terminated with a zero byte (routines at 2B75H
or 28A7H may be used to output the line). Note: This routine has been

Page 59

TRS-80 ROM Routines Documented Chapter 4

expanded in the Model III, so that when graphics characters are found
between a pair of guotation marks they are left unchanged rather than
being converted to BASIC reserved words (as happens in the Model I).
Uses AF,BC,DE.

2BE4H DELETE BASIC LINE OR LINES

On entry, the BC register pair must point to the start of the first
BASIC line to be deleted, and the HL register pair must point to the
start of the following line to be retained (note that the routine at
1B2CH may be used to find the start of the desired lines). On exit,
the lines are deleted, but the forward line pointers are not corrected
by this routine. Therefore, suggested entry to this routine is to PUSH
BC prior to the CALL to 2BE4H. Then, after the return from this
routine, you can POP DE and CALL 1AFCH to adjust the forward pointers.
It is also permissible to eliminate the PUSH/POP sequence by simply
making the CALL to 2BE4H, then a CALL to 1AF8H to adjust the pointers.
However, the latter method suffers from excessively long execution
times, especially for BASIC programs that have many lines (however, if
the lines to be deleted are located near the beginning of the BASIC
program, the difference in execution times for the two methods will be
slight). ALTERNATE ENTRY POINT: On entry to this routine, if the
pointer to the first line to be retained is in DE (instead of HL), you
may enter at 2BE5H. Uses AF,BC,DE,HL.

BASIC ERROR ROUTINES

Occasionally, it may be desirable to use the BASIC error-handling
routine, especially with machine language subroutines of BASIC

programs. The advantages of using the BASIC error routine include
these: The Stack Pointer is reset and a graceful re-entry is made to
BASIC. If error trapping is in effect (through use of an ON ERROR

GOTO statement), the program will branch to the BASIC error handling
routine, otherwise the selected error message will be printed, and the
computer will return to the "READY" prompt. Using the built-in error
routines saves memory. The main disadvantages are that there may not
be a built-in error message that 1is appropriate to the error
encountered, and that control will not normally be returned to vour
pregram, but will instead be passed to BASIC. This latter problem is
one you may wish to deal with anyway, since many of the ROM routines
documented in this series and elsewhere will jump to the BASIC error
routine if an error condition is encountered.

To start with first things first, there are two methods of using
the error-handling routine. The first is to load the E register with
the error code number, and then executing a JUMP to 19A2H. This error
code number is not the same as the error code numbers listed in vyour
TRS5-80 BASIC manual, but rather 1s the same as the error code numbers
returned by the BASIC ERR function. Specifically, the error code
number may be any EVEN number from zero through FEH (254 decimal),
although codes above 2CH (44 decimal) are not recognized by ROM BASIC
and normally return an Unprintable Error (in Disk BASIC some of these
codes are used to provide additional error messages).

The other method, which may be used to advantage for some types
of errors, is to simply JUMP to the proper location in ROM for that
error, Usually, the code at that location will locad the E register

Page 60

TRS-80 ROM Routines Documented Chapter 4

with the proper error code and then JUMP to 19A2H. However, in some
cases this Jjump is conditional on the status of one of the flags.
When this is the case, it probably will not be possible to use that
routine unless you know that the required flag will be properly set.
It may still be possible to save one byte in this case, since it takes
only one byte to set the carry flag (SCF) or clear the zero flag (XOR
a), while it takes two bytes to load the E register with a value.

The following is a list of each of the error codes recognized by
BASIC, the type of error generated by that code, the JUMP address to
the specific routine for that error, and the flag condition required
(if any) to use that routine:

CODE ERROR ADDRESS FLAG

00H NF NEXT without FOR 199DH

02H SN Syntax 1997H

04H RG RETURN without GOSUB 1EEAH NZ

06H 0D Out of DATA 2212H Z
or 22A0H Z

08H FC 1Illegal Function Call 1E4AH

OAH OV Overflow 07B2H

ocH OM Out of Memory 197aH

0EH UL Undefined Line 1BD9H

10H BS Subscript out of range 273DH

128 DD Redimensioned array 27334 NZ

14H /0 Division by zero 1992H

16H ID Illegal Direct 2831H

18H T™™ Type Mismatch 0AF6H

1aH 05 Out of String space 28DBH Z

1CH LS String too Long 29A3H C

1EH ST String formula too complex 28Al1H

20H CN Can't CONTinue 1DESH Z

224 NR No RESUME is8an NZ

24H RW RESUME Without error 19a0H

26H UE Unprintable Error 20038

28H MO Missing Operand 2410H Z

2AH FD Bad File Data 218aH Z

2CH L3 Disk BASIC only 612pH

Of course, there is always the possibility that you may want to
manipulate the error-handling routine a bit from within your machine
language program. Here are some facts you may find useful for that
purpose:

First of all, if you want to set up an ON ERROR GOTO condition,
or cancel a previous one, you should know that the line number for the
error trap is stored at 40EAH-40EBH. If you wish to set up an error
trap, simply store the starting line number of the trap at those
locations. To cancel an existing error trap, load those two locations
with zero.

Another way to disable an error trap is to load memory location
40F2H with FFH. This makes BASIC think it has found an error within
an error trap routine, and it will jump to the error message. To
restore normal operation, load 40F2H with zero (be sure to do this

Page 61

TRS-80 ROM Routines Documented Chapter 4

prior to returning to BASIC, or BASIC will think it is in an error
trap routine).

If you are using ROM routines in a machine language program, you
may not wish to be inadvertently thrown into an error routine.
Unfortunately, there isn't too much you can do about it, but you can
catch up with the runaway program before too much damage is done.
This is accomplished by intercepting the vector at 41A6H, which is
normally used under DOS to provide long error messages for disk BASIC.
You can insert a jump to an error—handling routine in your program at
this point. Unfortunately, one bit of serious damage has already been
done at this exit, and that is that the Stack Pointer has been reset
to the BASIC Stack Pointer Origin, which is stored at 40E8H-40ES9H.
Depending on whether you are running a stand-alone program or a
program that works with BASIC, you will have to decide how to recover
your stack after an error. The best plan is to try to avoid the
possibility of errors occuring within ROM routines. If that is not
possible for a given routine, then prior to calling that routine you
may wish to save the Stack Pointer in the IX or 1Y register pair, or
in a pair of memory locations you have reserved for the purpose.
Should the program go intc the error-handling routine, it will get
back to your program through 41A6H, and you can then reload the Stack
Pointer from wherever it was stored (the error code will be found in
the E register). For this to work successfully, you will need to do
three things at the beginning of your program:

1 - Load the three-byte vector at 41A6H with a Jjump to your
error-handling routine.

2 - Disable the ON ERROR GOTO trap using one of the methods in
the above paragraphs.

3 - Load 40E8H-40EY9H with the address of an alternate stack (will
only have two register pairs PUSHed on it at once) that is out of the
way of your program (one suggestion might be 40D2H, which is at the
top of the string work area and is very unlikely to interfere with the
running of your program).

If you are interfacing with BASIC through the USR command and
decide to use the above method, remember that you will have to restore
the changed memory locations to their original values before returning
to BASIC.

Page 62

TRS-80 ROM Routines Documented \ Chapter 5

CHAPTER FIVE - RESERVED RAM LOCATIONS

The ROM routines of the TRS-80 utilize a special area of memory
in order to store the various flags, pointers, and vectors needed by
the BASIC interpreter. This area is in RAM - Random Access Memory -
that's the memory that vyou can write to as well as read from.
However, we refer to this area as "reserved RAM" for the simple reason
that this area is reserved for the use of the system -~ user programs
are not normally stored in this area. In this chapter I will attempt
to describe the various reserved RAM locations used by Level II/Model
III BASIC. '

You may recall the "MEMORY MAP" from your Level II BASIC
Reference Manual. It looks something like this: ’

00060H -~ 2FFFH Level II BASIC ROM (0000H - 37FFH in Model III)
NOTE: Locations 3000H-37FFH as shown below apply to Model I only:

3000H - 37DDH Unused in Model I

37DEH Communication status address

37DFH Communication data address

37ECGH Interrupt latch address

37ElH Disk drive select latch address

37E4H Cassette select latch address

37E8H Line printer address

37ECH Disk controller command/status register address
37EDH Disk track position register address

37EEH Disk sector register address

37EFH Disk data register address

3800E - 3BFFH Memory-mapped keyboard
3C00H -~ 3FFFH vVideo display memory

4000H -~ 42E8H Level II BASIC fixed RAM (4000H - 43E8H in Model
IT1)

It is this latter section of memory which will be covered in this
chapter, and within that section only those addresses accessed by the

Level II/Model III ROM will be documented. Furthermore, in a few
instances portions of this area have already been documented in
earlier chapters. When that is the case, the reader will be referred

back to the appropriate section in order to avoid duplication of
material which has already been presented in this book.

Before we do go on, however, it might be helpful to focus briefly
on a few addresses from the above list. Model I, Level II BASIC uses
these three addresses for its own purposes (Model III uses
input/output ports instead, except as noted for 37EBH below):

37E4H - Prior to turning on the cassette motor, BASIC writes a “0¥ or
"l® into this location to select cassette drive number one or two,
respectively.

Page 63

TRS-80 ROM Routines Documented Chapter 5

37E8B -~ If a parallel line printer is in use, it is mapped to this
address. Writing a byte to this address sends it to the printer,
while reading this address determines printer status as follows:

Rit 7 = (0 if NOT BUSY

Bit 6 = 0 if NOT OUT OF PAPER
Bit 5 = 1 if DEVICE SELECTED
Bit 4 = 1 if NO PRINTER FAULT
Bits 0 - 3 are not used

On the Model III this address is valid only for reading printer status
(output is accomplished by writing to output port F8H, and printer
status can be obtained through an input from port F8H as well). On
either Model, the following line of BASIC code can be used to
determine if the printer is ready:

IF (PEEK (14312) AND 240) = 48 THEN ... (printer is available)

37ECH - This location is tested during the power-up sequence to
determine if a floppy disk controller is online, and if so the TRS-80
will jump to the disk bootstrap routine (unless the BREAK key is being
depressed) . If either zero or FFH is found at this address, then no
disk controller is found and control goes to Level II BASIC.

So much for memory-mapped addresses. We'll skip past the
memory-mapped kevboard (whole articles have been presented on this
subject alone, including Dennis Kitsz's fine article in The Alternate
Source, Volume 1, Number 5, which has been reprinted on pages 53-56 of
"The Custom TRS-80 & Other Mysteries", published by IJG Inc.). We'll
also skip the video memory, and get right into the reserved RAM
starting at 4000H. From here on, everything applies egqually to the
Model I and the Model III unless otherwise noted.

RESERVED RAM ADDRESSES

40008 - 4014H Vectors for RST 0 through RST 38H. See the complete
description of these vectors that appeared in chapter four of this
book.

4015H - 402CH Device Control Blocks for Keyboard, Video, and Printer.
See the complete description of the DCBs in chapter one of this book.

402DH - 402FH Normal Disk Operating System re-entry vector.

4030H - 4032H Abnormal DOS re-entry

4033H ~ 4035H DOS Device Vectoring Routine

4036H - 403CH Storage locations for keyboard scan routine. The

contents of keyboard "rows" are stored here so that when the keyboard
routine is called, it can determine whether the key has Jjust been
depressed (or whether that slow human hasn't taken his finger off the
dadburned kevy vetl}. These storage locations are organized as
follows:

Page 64

TRS-80 ROM Routines Documented Chapter 5

Storage Keyboard Bit set 1if key pressed:
address: row address: 0 1 2 3 4 5 6 7
4036H 380141 @ A B C b E ¥ G
4037H 3802H H I J K L M N 0
4038H 3804H p Q R S T U v W
40394 3808H X Y Z

403AH 3810H 0 1t 2" 3% 43 5% 6& 7°
403BH 3820H 8(9) ::* 4+ LK == > ?
403CH 3840H ENT CLR BRK UP DWN LFT RGT 5PC

Programmers wishing to detect keys outside of the normal keyboard scan
can utilize these locations. For example, when the Model I keyboard
scan routine is called, if either the SHIFT-0 or the spacebar are
depressed a space (20H) character will be returned. However, if the
spacebar was pressed location 403CH will have bit 7 set, while if the
zero key was pressed location 403AH will have bit 0 set. Also, a zero
can be POKEd into any or all of these locations to make the computer
"forget" what keys were held down on a previous key scan (repeating
keys, anyone?)}.

403DH - 407FH (Model III ONLY)-Used primarily by the Disk Operating
System, vectors at 403DH, 4040H, and 4043H service interrupt wvectors
3, 6, and 7 respectively (under non-disk systems all contain a Jjump to
35FAH, which in turn contains a "RET" instruction). 4046H 1is an
interrupt vector servicing the clock (interrupt vector 2) and contains
a jump to 35A9H in a non-disk system. 4049H is the Non-Maskable
Interrupt vector and normally contains a RST 0 instruction. The
remainder of this area is unused in non-disk systems.

403DH (Model I ONLY)-A flag byte used by the BASIC interpreter, this
location contains the CURRENT PORT OFFH OUTPUT BITS, which are
organized as follows:

BIT 3 Select videc 32 character mode if set

BIT 2 Turns on cassette tape relay if set

BITS 1 & 0 Are set for positive and negative audio pulses to the
cassette "AUX" plug

Programmers that attempt to output to port FFH should be aware that at
various points in the BASIC interpreter (such as when returning to
BASIC "READY", doing tape I/0, etc.) some or all of the bits stored
here may be output to port FFH, thereby canceling the previous status
of port FFH.

403EH - 407FH (Model I ONLY)-Unused in non-disk systems. The
real-time clock storage locations are located from 4040H to 4046H (see
4216H - 421CH on the Model III for details).

407DH - Stack pointer for DOS (set by ROM bootstrap routine).

4080H - 408DH Subroutine CALLed from O08CAH, used in non-integer
precision division routine. On power-up this routine is moved from
18F7H - 1904H in the ROM to this location. Prior to calling the
routine it is modified by instructions at 08B1H, 08B6H, 08BBH, 08C4H,
08D2H, and 08F4H.

Thom e G B

TRS-80 ROM Routines Documented Chapter 5

408EH - 408FH USR routine entry point address.

4090H - 4092H Mantissa of constant wused in generating random
numbers.

4093H - 4095H Port input routine. Contains instructions IN A, (n)
followed by RET, where the value of n is placed into the routine (at
4094H) prior to calling it.

4096H - 4098H Port output routine. Contains instructions 0OUT (n),A
followed by RET, where the value of n is placed into the routine (at
4097H) prior to calling it.

4099H - INKEY$S buffer (see information on the INKEYS routine in
chapter three of this book). From BASIC (but not from machine
language) it is possible to poke a "default" response into the INKEYS
buffer. For example, consider the following BASIC line:

POKE 16537, 65 : AS = INKEYS

If a key is being held down when this line 1is executed, AS$ will
contain the character associated with that key, otherwise it will
contain the letter A (which has an ASCII code of 65 decimal). This
works in BASIC because between the execution of the POKE statement and
the execution of the assignment (A$=INKEYS$) statement, BASIC does a
kevboard scan to check for the BREAK or SHIFT-@ kevs, but if anv other
key is found to be depressed its ASCII character code will be stored
at 4099H, replacing the value POKEd there. The INKEYS function itself
checks first for a non-zero value at 4099H, and if none is found it
does a keyboard scan, thus from a machine language program the
keyboard would be ignored if a character is stored at 4099H. Note
also that a POKE 16537,0 statement can be used to clear the INKEYS
buffer, without c¢reating a string or using string space to store an
unwanted character.

409AH - Current Error code (returned by ERR function).

409BH - Current TAB position of line printer. This byte contains a
count of the number of characters already printed on the current line,
and may be used to simulate a TAB function that works correctly past
the 63 or 127 character limit of the BASIC TAB function. For exanmple,
instead of this:

LPRINT TAB(n) "“SOMETHING TO PRINT"

Which will not work properly if n is greater than 63 (or 127 on Model
III or new-ROM Model I TRS-80's), use this:

LPRINT STRINGS (n-PEEK(16539),32) "SOMETHING TO PRINT®

Remember that the above TAB function substitute could be made a
defined function under Disk BASIC if desired:

DEFFNAS (X%) = STRINGS (X%-PEEK(16539),32)

Page 66

TRS-80 ROM Routines Documented Chapter 5

The above LPRINT statement would then be written as:
LPRINT FNAS(n) "SOMETHING TO PRINT®

409CH - Output device type flag. Directs output of many ROM routines
to video display (if zero), printer (if +1), or cassette (if -1, or
FFH). Normally contains zeroc (output to video).

409DH - Maximum number of characters on video display line. Used by
PRINT command routine when printing numeric variables or constants so
that a number does not overflow the end of a video display line. This
location is set to 64 at power-up and is not changed by the BASIC
interpreter once set. However, a POKE to this location may be used to
prevent the PRINTing of numerics beyond a certain point on a line.
Alsc, if you are operating in 32-character display mode it may be
necessary to POKE 16541, 32 to prevent numeric printouts from
overflowing the end of the line. The setting .of this location does
not affect the printout of strings (variables or constants).

409EH - The value in this location specifies the maximum number of
l6-character print zones on a 1line (used when items in a PRINT
statement are separated by commas). Value stored here is decoded as
follows: 0 = one print zone, 16 = two print zones, 32 = three print
zones, and 48 = four print zones per line (when a comma separator is
found in a PRINT statement, BASIC checks the cursor line position byte
at 40A6H and if it is greater than or equal to the value stored here,
a carriage return is output to the video display driver). This
location is set to 48 (four print zones) at power-up and is not
changed by the BASIC interpreter once set,

409FH - Unused in non-disk systems.

40A0H -~ 40AlH Start of string storage area, set to 50 less than top
of memory pointer (at 40B1H) at power-up to provide 50 bytes of string
storage area. Changed by use of CLEAR n command (with argument).

40A2H ~ 40A3H Line number of BASIC line currently being executed, or
FFPFPH if in direct mode.

40A4H - 40A5H Start of BASIC program storage area. This may be
changed by the user for various reasons (for example, to temporarily
load a program in higher memory while retaining a program in lower
memory), but BASIC will not operate properly unless the memory
location just below the one pointed to contains a zero byte (in other
words, if 40A4H-40A5H points to 7000H and a BASIC program is loaded,
it will begin 1loading at 7000H, but in order to execute it memory
location 6FFFH must contain a zero byte).

40A6H - Current cursor position on video display line (as returned by
the POS function).

40A7H - 40A8H Start of keyboard buffer area, also used by BASIC while
encoding and decoding BASIC lines (as during LIST, etc.)

40A9H - Used by INPUT command routine, contains zero byte if (and only
if) input is from cassette. A bug in the first release of the Model I

Page 67

TRS~80 ROM Routines Documented Chapter 5

Level II BASIC ROM required that this location be POKEd with a
non-zero value prior to reading program DATA statements. This bug was
corrected soon after Level II BASIC was released, so that this POKE is
required only for older TRS5-80 Model I machines.

40AAH - 40ACH Seed for next random number. Byte at 40ABH is loaded
with current value of Refresh register whenever RANDOM statement is
executed.

40ADH - Unused in non-disk systems.

40AEH - This flag 1is used by the BASIC locate or create variable
routine. If location contains zero, variable is to be created or
located (if already created). If byte is not zero, variable is to be
created only and an error exists 1if the variable is found to be
already created. The latter situation exists when an array is being
created using the DIM statement.

40AFH - Number Type Flag (NTF) for ACCUM. Indicates type of number
currently stored in ACCUM (2=integer, 3=string, 4=single precision,
8=double precision). See chapter two of this book for more
information.

40BO0H ~ Used to flag DATA statements while encoding BASIC lines, and
to store operator number during expression evaluation.

40B1H - 40B2H Top of memory pointer. Last usable location for BASIC.
This pointer is set by one of the following: If the user answers
Memory Size? question with a wvalue, it will be used. However, if
only ENTER is pressed in response to Memory Size?, then on a non-disk
system the highest available memory location will be used, but under
Disk BASIC the DOS top of memory pointer will be copied into this
location. If one is programming in BASIC and attempting to change
this pointer by POKEing in new values, a CLEAR n statement (with a
mandatory numeric argument) should be used immediately following the
POKEs, in order to adjust other system pointers to the new memory
size. Also, temporarily changing this pointer will allow a short
BASIC program to CLEAR more than 32767 bytes of string space on a 48K
system, provided that enough free memory is available (BASIC normally
does not permit this). As an example, the following BASIC line will
actually clear 16384 bytes more than 1is specified in the CLEAR
statement (the equivalent of a "CLEAR 35000" statement in this case):

POKE 16562, PEEK (16562)-64: CLEAR 18616: POKE 16562, PEEK (16562)+64

40B3H - 40B4H Pointer to the next available location for storage of a
three-byte string variable VARPTR in the string VARPTR storage area
that begins at 40BS5H.

40B5H - 40D2H String variable VARPTR storage area. Holds three-byte
string descriptors (first byte contains length, second and third bytes
contain address of string) for strings currently being used in BASIC
string operations (such as "temporary" strings).

Page 68

e

TRS-80 ROM Routines Documented Chapter 5

40D3H - 40D5H VARPTR storage area for string currently being created
by BASIC (first byte contains length, second and third bytes contain
address of string).

40D6H —~ 40D7H ©Pointer to next free byte in string storage area.
Strings build downward from the top of memory, therefore at power—up
(or when a CLEAR command is executed) this pointer will contain the
same address as the top of memory pointer (40B1lH-40B2H). If a ten
byte long string is then created, this pointer will point to the top
of memory minus ten, and so on. When there is not encugh room left to
insert a new string (the difference between this pointer and the one
at 40A0H-40AlH is less than the length of a string to be stored), a
"garbage collection" is performed, and if that does not free enough

string space an Out of String Space error occurs. Under some
circumstances, we may be able to manipulate this pointer in order to
forestall a "garbage collection”™ (which may appear to "lock up"” the
computer for as much as several MINUTES). For example, 1f we are

performing some operation that will create many "temporary" strings
(but none that we want to save after a certain point), we could PEEK
at the values in these pointer locations and store them in numeric

variables. At the completion of our string operation, we could then
re-POKE the original pointer values, thus abandoning the unneeded
strings without performing a "garbage collection”. Under certain

circumstances this technique «could cut program execution time
considerably.

40D8H - 40D9H This pair of locations is used a temporary storage
location by more than one routine. Uses include program pointer
during expression evaluation, pointer to data while processing DIM
statement, pointer to end of array while packing strings, and within
the PRINT USING routine the byte at 40D8H is used to temporarily store
the PRINT USING format flag bits.

40DAH - 40DBH Line number of last DATA item read. Line number is
saved so that in the event of a syntax error in a DATA statement, the
proper error line number will be displayed and the EDIT mode will
function on the correct line.

40DCH - If this byte contains 64 a FOR-NEXT loop is being processed,
otherwise byte will contain zero. Used to prevent an array variable
from being used as the index counter in a FOR-NEXT loop (for example,
the statement FOR X(0) = 1 TO 10 will cause a syntax error, because
X(0) is an array variable and cannot be used as the counter
variable}.

40DDH - Flag indicates whether inputing text. Used by RETURN and
RESUME NEXT commands.

40DEH -~ Used for two different purposes: Flags whether READ or INPUT
statement when processing those commands (zero represents INPUT).
Also used to store delimiter character during processing of PRINT
USING statement.

40DFH ~ 40EQ0H Used by several routines, as a pointer to variable
receiving new value during evaluation of a "LET" expression, execution
address of BASIC program, etc. Also, after a SYSTEM tape is loaded

Page 69

TRS-80 ROM Routines Documented Chapter 5

these locations contain the entry point address of the program (which
is used if only a "/" is typed in response to the next SYSTEM command
prompt).

40ElH - AUTO input flag. Zero byte here means AUTO is not on.
40E2H - 40E3H Current input line number used by AUTO input function.
40E4H - 40E5H Line increment used by AUTO input function.

40E6H - 40E7H Used by several routines for temporary storage of
various pointers to the BASIC program (saved position in program text,
buffer position during text encoding, etc.).

40E8H - 40E9H Temporary storage of the BASIC stack pointer origin.

40EAH - 40EBH Line number of last error, as returned by ERL
function.

40ECH - 40EDH Current or error line number (used when a period is
used to replace a BASIC line number, and when syntax error occurs in
program) .

40EEH - 40EFH Pointer to last byte executed when error occured. Used
by RESUME command.

40FOH - 40FlH Address of error trap line (points to first statement
of line specified in ON ERROR GOTO statement), or zero if no error
trap set.

40F2H - Flag to indicate whether an error has occured. Set to -1
(FFH) on error, otherwise set to zero (such as after RESUME statement
has been executed). POKEing the appropriate values into this localion
will allow you to do many things that BASIC normally does not permit,
such as exiting an error trap without using a RESUME statement, or
redefining the error trap (by using an ON ERROR GOTO statement) from
within a previously defined error trap.

40F3H - 40F4H Used to store position of expressions being evaluated,
as a decimal point location pointer, etc.

40F5H - 40F6H Last line number executed prior to execution of STOP or
END statement or termination using the BREAK key.

40F7H - 40F8H Pointer to end of last statement executed (points to
the colon or zero byte terminator). Used by CONT command.

40F9H - 40FAH Pointer to start of simple variables, or one memory
location higher than the last of the three zero bytes marking the end
of the BASIC program. Used to determine end of BASIC program when
saving the program. Note that by taking the address stored here,
subtracting 2, and POKEing the resulting address into the start of
BASIC program pointer at 40A4H-40A5H, then loading a program with
higher line numbers than the one presently in memory, and finally
re-POKEing the original wvalues of 40A4H-40A5H back into those

Page 70

TRS~80 ROM Routines Documented Chapter 5

locations, it is possible to append a program to a program already in
memory. From the BASIC command mode, this is done as follows:

>? PEEK (16548), PEEK (16549) ‘write down the results
>POKE 16548, PEEK (16633)-2 : POKE 16549, PEEK (16634)
>CLOAD 'or LOAD program to be appended

>POKE 16548, nl : POKE 16549, n2 ‘replace nl and n2 with wvalues
you wrote down in first step

Note: If PEEK (16633) is less than two, the second step above will
bomb with an error message. If that happens, replace it with the
following line:

>POKE 16548, PEEK (16633)+254 : POKE 16549, PEEK (16634)—1
40FBH - 40FCH Pointer to start of array variables.

40FDH - 40FEH Pointer to end of array variables (start of "free”
memoryl .

40FFH - 4100H ©Pointer to end of last DATA item read. Points to comma
or other terminator at end of last item read -~ search for next DATA
item to be read will begin here. RESTORE changes this pointer to
point to one byte prior to beginning of BASIC program. A selective
RESTORE to some data item past the first can be accomplished by
manipulating this pointer. For example, suppose that at some point in
your program you will want to RESTORE to the 51st DATA item. At the
start of your program you could insert a line similar to this:

FOR X=1 TO 50: READ X$: NEXT: R1=PEEK(16639): R2=PEEK(16640): RESTORE

Then, whenever you wanted to RESTORE to the 51st DATA item, you would
simply execute the following statements:

POKE 16639,R1: POKE 16640,R2
The next READ instruction would then get the 51lst DATA item,

4101H - 411AH variable default type declaration table. EBEach memory
location in this table applies to variables beginning with a
particular letter of the alphabet - the location at 4101H applies to
variables starting with the letter A, 4102H applies to variables
starting with B, 4103H to variables starting with C and so on up to
411AH, which contains the default type for all variables starting with
the letter %. Each location contains one of the following values: 2
(integer), 3 (string), 4 (single precision), or 8 (double precision).
When a variable name is used in a BASIC program and does not have a
specific type declaration character (%, $, !, or #) following, its
type defaults to the type specified in this table. All defaults are
set to single-precision when a program is RUN, and may be changed
through use of the DEFINT, DEFSTR, DEFSNG, or DEFDBL statements.

411BH - Trace flag. If zero, trace is off, while AFH indicates that
trace is on (usually controlled by TRON and TROFF commands).

Page 71

TRS-80 ROM Routines Documented Chapter 5

411CH - 412EH This area contains the arithmetic accumulators (ACCUM
and ACCUM2) and some associated locations. These are fully detailed
in chapter two of this book.

412FH - Apparently unused in non-disk systems.

4130H -~ 4149H Buffer used to store result of conversion of numbers to
displayable ASCII characters. When positive integers (BASIC line
numbers, etc.) are converted, the area from 4130H to 4136H is used,
and the string is stored right Jjustified with leading spaces in
locations 4130H to 4135H (4130H always contains a space character),
while 4136H always contains a zero byte to terminate the string.
Other routines (such as PRINT USING) may use more of this area.

414AH - 4151H Temporary ACCUM sometimes used by arithmetic routines
(such as to hold divisor used by double precision division routine).

4152H - 41A5H contain three-byte vectors to Disk BASIC commands and
functions. Under non-disk BASIC, all of these vectors (with the
exception of TIME$ on the Model III only) contain a jump to 01l2DH, the
"L3 Error" routine (Model III TIME$ normally contains JP 3030H).
Under Disk BASIC these vectors are modified, so that the jumps are to
the wvarious Disk BASIC routines that support these commands and

functions. Non-disk users may place jumps to their own machine
language routines in these vectors, so that the routine can be called
by using the corresponding BASIC keyword. The addresses of these
vectors (and corresponding keywords) are as follows:

4152H cvI

4155H FN

4158H Cvs

415BH DEF

415EH CVD

4161H EOF

4164H LoC

4167H LOF

416AH MKIS$

416DH MKS$

4170H MKD$

4173H CMD

4176H TIMES

4179H OPEN

417CH FIELD

417FH GET

4182H PUT

41 85H - CLOSE

4188H LOAD

41 8BH MERGE

41 8EH NAME

4191H KILL

4194H &

4197H LSET

419aH RSET

419DH INSTR

41 A0H SAVE

41A3H LINE

Page 72

TRS-80 ROM Routines Documented Chapter 5

41A6H - 41E4H contain three-byte Disk BASIC links which are used to
extend the capabilities of various BASIC routines when a Disk BASIC is
present. Under non-disk systems, the first byte of each of these
vectors is a machine language RET instruction. A short description of
each of these links follows:

41A6H - Called at 19ECH, from error-handling routine. Used to provide
long error messages. .

41A9H - Called at 27FEH, from entrance to USR function routine. Used
to expand function to provide up to ten USR calls. If a program
running wunder Disk BASIC contained the statement POKE 16809,201
(placing a RET instruction at 41A9H), the expanded USR function would
be defeated and the single USR call of non-disk BASIC would be
restored. Such a program could run correctly under either non-disk or
Disk BASIC, provided that the normal Level II/Model III BASIC
requirement for POKEing the USR routine starting address into memory
locations 408EH~408FH is adhered to (rather than the use of the DEFUSR
command that Disk BASIC normally requires).

41ACH - Called at 1AICH, from BASIC re-entry ("READYY).

41AFH - Called at 0368H, from near start of routine to input a line
from the keyboard into the I/0 buffer (zeroes INKEYS$ buffer and video
tab position indicator prior to call).

41B2H - Called at 1AAlH, after BASIC line has been tokenized (HL
points to start of tokenized line).

41B5H - Called at 1AECH, after insertion or replacement of BASIC line

41B8H - Called at 1AF2H, after above call followed by call to 1B5DH
(CLEAR command, leaves HL pointing to start of BASIC program -1).

41BBH - Called at 1BBCH (from NEW command) and at 1DBOH (from END
command). Used to CLOSE any files remaining open.

41BEH - Called at 2174H, at termination of PRINT statement (used to
terminate output to disk using PRINT # statement).

41ClH - Called at 032CH, from byte output routine that starts at
032AH.

41C4H - Called at 0358H, from start of routine to scan keyboard and
input keystroke (if any).

41C7H - Called at 1EA6H, when RUN command has an argument (filename)
following.

41CAH - Called at 206FH, from start of PRINT command (check for output
to disk using PRINT #).

41CDH - Called at 20C6H, from PRINT routine after a numeric item has
been converted to an ASCII string in preparation for printing.

Page 73

P

TRS-80 ROM Routines Documented Chapter 5

41D0H - Called at 2103H, from PRINT routine after code which outputs a
carriage return (to prevent numeric items being printed from
overflowing the end of a line).

41D3H - Called at 2108H (from PRINT command when a comma is used to
separate items to be printed) and at 2141H (from PRINT command routine
when the TAB function is used, after the TAB argument has been
evaluated and placed in the E register. It is worth noting that the
original argument (if within the range 0-255) is still stored as an
integer in ACCUM, with the NTF set to 2, indicating an integer (when
this vector is called from the comma separator routine the NTF will
normally be set to 3, indicating a string). Thus, if it is desired to
be able to use TABs in the range 0-255 (instead of 0-63 or 0-127 as
allowed by the ROM), this vector may be altered to jump to the
following patch routine which will permit the longer TABs:

E7 RST 20H ;Check Number Type Flag
FCO52B CALL M,2B05H ;DE=original TAB if NTF=integer
C9 RET ;Cassette BASIC only

Disk BASIC users should use a jump to the routine formerly called from
this vector in place of the RET instruction).

41D6H - Called at 219EH, from start of INPUT command (check for input
from disk using INPUT #).

41D9H - Jump to this location at 2AECH, to Disk BASIC routine that
permits MID$ on left side of "=" (assignment statement).

41DCH - Called at 222DH. Part of READ/INPUT command routine, called
just prior to assigning data that has been READ or INPUT to variable.

41DFH - Called at 2278H (after data from INPUT command has been
assigned to variable, just prior to test for "extra" data that would
cause an "?EXTRA IGNORED" message to be printed) and at 2B44H (from
LIST command after start and end addresses of program have been found
and a check for end of program has been made)

41E2H - Called at 02B2H. This call is located at the entrance to the
SYSTEM command and is executed each time the "*72" prompt is about to
be displayed. If a SYSTEM tape is being loaded and it places a jump
to its entry point address in this vector, the program will start
automatically. The same thing can be achieved by placing a JP (HL)
instruction (an E9H byte) at 41E2H, provided that the entry point
address on the tape is correct. Note, however, that the SYSTEM
command will be unusable afterwards unless the program reloads a RET
instruction (a C9H byte) to 41E2H after execution begins.

41E5H - 42E8H (42E5H - 43E8H on Model III) Addresses 41E5H-41E7H
(42E5H-42E7H on Model III) are initialized by ROM code at 0080H-0089H
to contain the bytes 3AH, 0, and 2CH (a colon, zero byte, and comma).
The BASIC input/output buffer (also used while encoding and decoding
BASIC lines) begins one byte higher (41E8H or 42E8H) and is defined by
a continuation of the above mentioned ROM code (008AH - 008DH), which
initializes the buffer pointer at A40A7H-40A8H. The buffer is exactly
256 (100H) bytes long, and is immediately followed by a byte that is
always zero, and marks the end of reserved RAM (42ES8H or A43E8H).

Page 74

TRS-80 ROM Routines Documented Chapter 5

During power-up, the system stack briefly resides within this buffer
(the Stack Pointer is initialized at 41F8H or 42F8H by the instruction
at O00ACH), and on the Model I, the SYSTEM command places its Stack
Pointer within this buffer, at 4288H.

ADDITIONAL LOCATIONS USED IN MODEL III

The following locations apply to the Model III (and Model 4 when used
in the Model III mode) ONLY:

41E5H - 41FCH Device Control Blocks for RS-232-C Input, Output, and
Initialization. See the complete description of the DCBs in chapter
one of this book. Model 4 users should also see ADDITIONAL LOCATIONS
USED IN MODEL 4 below.

41FDH - Used by repeating key routine. Saves LSB of keyboard buffer
pointer (buffer at 4036H-403CH) when key is found depressed.

41FEH - Used by repeating key routine. Saves contents of current
keyboard "row" when key is found depressed.

41FFH - 4200H Used by repeating key routine. Holds maximum repeat
delay count (1500 decimal or 5DCH for first repeat delay, 150 decimal
or 96H for subsequent repeats of same character).

42018 - 4202H Used by repeating key routine. Holds current repeat
delay count, which is compared with value at 41FFH-4200H to determine
if it is time to repeat the character.

4203H - 4205H Three byte BREAK key vector used when BREAK is pressed
during cassette tape or RS-232-C operations. Initialized to contain
jump to 022EH, which in turn contains EI and Jp 1a19H
instructions.

4206H - 4208H Three byte vector services interrupt # 4. Under
non-disk systems contains a jump to 35FAH, which in turn contains a
"RET" instruction.

4209H - 420BH Three byte vector services interrupt # 5. Under
non-disk systems contains a jump to 35FAH, which in turn contains a
"RET" instruction.

420CH - 420DH Pointer . to "write byte to cassette” routine.
Initialized by "write cassette leader” routine, normally contains
address of either 500 baud (3241H) or 1500 baud (32BAH) byte output
routine.

420EH - 420FH Pointer to "read Dbyte from cassette” routine.
Initialized by "read cassette leader®™ routine, normally contains
address of either 500 baud (3203H) or 1500 baud (32CAH) byte input
routine.

4210H - A flag byte used by the BASIC interpreter, this location
contains the CURRENT PORT OECH OUTPUT BITS, which are organized as
follows:

Page 75

TRS-80 ROM Routines Documented ; Chapter 5

BIT 6 Enables fast clock speed if set on Model 4 ONLY

BIT 5 Disables video wait states if set (not used on Model 4).

BIT 4 Enables I/0 bus if set

BIT 3 Japanese Kana character set used as "special® characters
if set

BIT 2 Select video 32 character mode if set

BIT 1 Turns on cassette tape relay if set

BIT O Enables clock display on video if set

Programmers that attempt to output to port ECH should be aware that at
various points in the BASIC interpreter (such as when returning to
BASIC "READY", doing tape I/0, etc.) some or all of the bits stored
here may be output to port ECH, thereby canceling the previous status
of port ECH. Also, it must once again be noted that in all current
editions of the Model III ROM, an error exists in that the test for
double-width characters at 0348H has not been changed to test the flag
at 4210H rather than the flag at 403DH. This can cause serious
problems when attempting to make use of the 32-character mode on the
Models III and 4.

4211H - Cassette speed flag. If zero, 500 baud speed is used for tape
input/output, otherwise 1500 baud speed is used.

42124 - Asterisk blink counter. Each time a byte is read from tape,
this counter is incremented and ANDed with 5FH. If the result is
zero, the status of the asterisk in the upper right corner of the
video display is reversed (turned on if it was off, or off if it was
on).

4213H - Default interrupt vector setting. This byte is output to port
EOH (the maskable interrupt latch) whenever the "turn off cassette"
routine is executed.

4214H - Number of lines to protect at top of video display. Only the
lowest three bits are used (byte is ANDed with 7 to determine number
of protected lines).

4215H - Unused in non-disk systems.

4216H - 421CH Clock storage locations. The corresponding addresses
in the Model I are also given in the following table:

Model IIZI Model I

Address: Address: Storage for:
4216H 4040H Heartbeat Counter
4217H 4041H Seconds

4218H 4042H Minutes

4219H 4043H Hours

421AH 404 4H Years

421BH 4045H Days

421CH 4046H Months

421DH - 4223H Device Control Block for Input/Output Router. See the
complete description of the DCBs in chapter one of this book.

Page 76

TRS-80 ROM Routines Documented Chapter 5

4224H - Control key flag used by keyboard driver routine. Contains
1FH if control key sequence (left SHIFT and down-arrow keys) was
pressed, else contains FFH. Can be tested to determine how certain
control codes were produced (for example, whether a carriage return
character was produced by pressing the ENTER key, or through the use
of the Control-M seguence).

4225H - 42E4H Presently undefined in non-disk systems, except that
the SYSTEM command places its Stack Pointer within this area, at
4288H

42E5H - 43E8H See above under "41lES5H - 42E8H" (equivalent Model I
addresses).

ADDITIONAL LOCATIONS USED IN MODEL 4

The following locations apply to the Model 4 when used in the Model
III mode ONLY. Although they are technically inside the the
boundaries of the RS-232-C Input and Output Device Control Blocks,
they are actually referenced only by the Model 4 Keyboard Driver
routine, and as such merit further discussion here:

41EBH - ASCII character that will be returned when "F1" key is
depressed. Normally set to 60H (shift-@) during BASIC initialization,
but the character stored at this location may be changed, so that any
desired character may be returned when "Fl" is pressed.

41ECH - ASCII character that will be returned when "F2" key is
depressed. Normally set to 1BH (shift-up arrow) during BASIC
initialization, but the character stored at this location may be
changed, so that any desired character may be returned when "F2" is
pressed.

41F3H - ASCII character that will be returned when "F3" key is
depressed. Normally set to 08H (backspace) during BASIC
initialization, but the character stored at this location may be
changed, so that any desired character may be returned when "F3" is
pressed.

41F4H - Storage location for keyboard scan routine. The contents of
the keyboard "row" at 3880H is stored here (see the discussion on
memory locations 4036H through 403CH for more information on the use
of the kevboard row storage locations). This storage location is
organized as follows:

Bit set if key pressed:

o - e e W S s R D W D W W S D S D D S S IS WS T o D ST G W W S S A s S I S Y S G e e

LSHFT RSHFT CTRL CAPS Fl F2 F3 (unused)

Page 77

TRS-80 ROM Routines Documented Appendix I

APPENDIX I

THE BASIC DIFFERENCES
Model I & III ROM BASIC Compared

(This appendix 1is a revision of an article that originally
appeared in The Alternate Source, Volume 3, Number 2; Issue 14; March,
1982. It details the differences between the Model I and the Model
III ROM, References to the Model 4 have been added near the end of
the article, but otherwise it remains relatively unchanged from its
original form.)

I have this love/hate thing about the Model III TRS-80. For
example, I loved it when I found out that turning the power on or off
with a disk still in the drive did not necessarily sprinkle garbage
all over the disk (I still wouldn't recommend making a habit of doing
that, though). I loved the sharper video display with built-in
lowercase and better graphics.

I've decided to hold on to my Model I for a while longer, though,
because I hate the way they destroyed the beauty of the BASIC
interpreter. Let me explain. Model I BASIC was a masterpiece of
assembly language programming. The code was efficient and tight, with
hardly a wasted byte. Its flaws were few, and for the most part
easily corrected in later editions.

The Model III ROM, however, 1is something 1like an o0ld art
masterpiece that has been enlarged and touched up by an art student.
The ROM additions are clumsy by comparison. Much space is wasted,
both by the routines themselves, and by scattered areas throughout the
ROM where a few bytes here or there are "dead" -- leftover pieces of
old code, etc. that is not used by the new ROM. To some extent, this
may have been unavoidable, but it seems that more care could have been
taken to make the new code interface well with the old code. More new
features could have been placed in the added 2K of ROM, or more of the
Model I code could have been retained in order to lessen program
compatibility problems, or both.

In any event, the bytes of Model III BASIC have already been
etched in silicon, so the purpose of this article will be to explore
the differences between the Level II BASIC so familiar to Model I
users, and the new version designed for the Model III.

A word about the listings below - ALL differences between the
Model I and Model III ROMs are shown. The Model I ROM version 1.3
(the latest version of the so-called "o0ld" ROM) was compared to the
latest known version of the Model III ROM (at the time this article
was originally written). Differences are shown in the format
nnnnH - nnnnH, where all addresses falling within the range shown are
different in the two ROM versions. At certain locations, the two
versions may by coincidence be the same for a byte or two even though
the routines found in those areas are completely different. This
explains why the start or end of some routines may not exactly
coincide with the start or end of the "different"™ portion of ROM, or
why a routine may have more than one block of "different" code.

Page 78

TRS-80 ROM Routines Documented Appendix I

If an address falls within one of the ranges shown below, you can
be sure that the byte stored there was different in the Model I ROM
1.3, and in the latest Model TIII ROM. Otherwise, the byte was the
same in the two ROM versions. By checking the text nearest a ROM
address of interest, you should be able to determine if the routine
you wish to work with has been relocated or modified. Be sure to read
the text carefully if a memory location near the one you are
interested in has been changed, because as mentioned, sometimes bytes
are the same due to coincidence,

THE ROM DIFFERENCES

00038 ~ 0004H Part of JP instruction that begins at 0002H. The
jump is to the power-up routine, located at 0674H in the Model I but
jump is to 3015H in the Model III (3015H is the location of a vector
to the start of the actual routine).

000EH - OOOFH Part of JP instruction that begins at O000DH. The
jump is to the disk bootstrap loader routine, located at 069FH in the
Model I but jump is to 3012H in the Model III (3012H is the location
of a vector to the start of the actual routine).

0047H - 0048H Part of JP instruction that begins at 0046H. The
jump is to the I/0 driver entry routine, located at 03C2H in the Model
I but relocated to 0674H in the Model III.

00508 -~ 0062H In the Model I, locations 0050H through O005FH are a
lookup table for special characters associated with the keyboard scan
routine. These same locations in the Model III contain the entry

points for routines associated with the RS-232-C interface (Receive
character at 0050H, Transmit character at 0055H, Initialize RS-232-C
at 005aH). In both models, 0060H is the start of a time-delay
routine, but in the Model III the three bytes starting at 0060H have
been changed to a JP 0lFBH instruction. The actual time delay routine
(same as in the Model I except that an extra instruction is added to
compensate for the faster clock speed of the Model III) has been moved
to O0LFBE in the Model IIX. Note that entry at 0063H has the same
effect in both models, that is, the time delay will occur only if the
z flag is reset (NZ).

0066H - 0070H Pressing the RESET button causes a non-—maskable
interrupt, which in turn forces a jump to 0066H. In the Model I, a
portion of the code that handles non-maskable interrupts is located
from 0066H to 0071H. In the Model III, 0066H contains a jump to 3039H
(the non-maskable interrupt routine in the Model III), 0069H contains
a jump to 0452H (routine to initialize all I/0 drivers), and O0O06CH is
the beginning of the routine to route I/0 (loads DE with 421DH and
then jumps to 001BH).

00828 ~ 0082H Instruction starting at 0080H loads HL with 41E5H in
the Model I, 42E5H in the Mcodel III. Following this, three memory
locations (starting with the one pointed to by HL) are loaded with the
values 3AH, 00H, and 2CH respectively. HI, is then incremented once
more and the result (41EB8H or 42E8H) points to the start of the input
buffer (and is stored at 40A7H).

Page 79

TRS-80 ROM Routines Documented Appendix I

00AAH - 00AAH Instruction starting at O0A8H loads HL with 42E8H in
the Model I, 43E8H in the Model III. This memory location is then
zeroed (BASIC programs begin at the FOLLOWING memory location in
non-disk systems). :

OOAEH - OOAEH Instruction starting at OOACH 1loads the Stack
Pointer with 41F8H in the Model I, 42F8H in the Model III.

00B2H - 00B4H In the Model I, a CALL to 0lCY9H (the "clear screen®
routine) in located here (just prior to printing the "MEMORY SIZE?"
prompt on the video display). 1In the Model III this has been replaced
by three zero bytes (NOPs).

00C6H - 00C6H Instruction starting at 00C4H loads HL with 434CH in
the Model I, 444CH in the Model III. If only "ENTER" was pressed in
response to the "MEMORY SIZE?" prompt, a memory test is initiated
starting at the location pointed to by HL, and continuing upward until
the end of memory (or a bad memory location) is reached.

OOEAH - OOEAH Instruction starting at 00E8H loads DE with 4414H in
the Model I, 4514H in the Model III. This is the minimum "MEMORY
SIZE" that can be specified by the user.

O0FFH - 0101H The instruction previous to this loads HL with the
starting address of the opening message ("RADIO SHACK..."). In the
Model I, a CALL to 28A7H (the "display message" routine) is stored
here, while in the Model III this has been changed to a jump to
37EBH.

0106H - 010AH Part of "MEMORY SIZE" prompt (changed from "EMORY"
to "emory").

010DH - O010FH Part of "MEMORY SIZE" prompt (changed from "IZE" to
"ize").

0112H - 0l15H Part of "RADIO SHACK" (changed from "ADIO" to
"adio").

0118H - OllBH Part of "RADIO SHACK" (changed from "HACK" to
"hack").

011DH ~ 0121H Changed from "LEVEL" to "Model"®.

0125H - 012CH Part of "LEVEL II BASIC" or "Model III Basic”

(changed from " BASIC" followed by carriage return and zero byte to "I
Basic" followed by carriage return only).

01DAH - OlEFH The routine to print the contents of the screen on
the line printer is located from 01DY9H to 01F4H on the Model III. On
the Model I, O0lD9H - O0lF7H contains the routine to output one bit to
the cassette.

0lFlH - 0lFlH 01FO0H contains CALL 0221H instruction on Model I,
CALL 0214H instruction on Model III. See above.

Page 80

TRS-80 ROM Routines Documented Appendix I

01F3H -~ Q1F4R Contains LD B,5CH instruction on Model I, JR 01DCH
instruction on Model 1II. See above.

01irF8H -~ 020FB In the Model I, the routine to turn off the cassette
recorder is located from O01FB8H to 0211H. In the Model I1II, 017F8"
contains a jump to 300CH (the location of a vector to the "turn off
cassette” routine in the Model III). O1FBH through 0201H contain the
time delay routine {(see notes on 0060H), and 0202H through 020FH
contains the text "(c) '80 Tandy" and a carriage return.

02128 - 0231H In the Model I, routines to define cassette drive
(062120 - 0Z21DH), reset the cassette input port FFH (021EH - O22BH),
and to blink the asterisk while reading a cassette (022CH - 0234H).
In the Model III, a routine to insure compatibility with programs that
define the cassette drive (XOR A followed by RET, located at 0212H &
0213H), a subroutine wused by the routine that begins at 01D9H
(02141 - 02278y, a couple of cassette-related segments
(0228H - 022DH), and an EI instruction followed by JP 1A19H (enable
interrupts and return to BASIC "READY", located at 022EH - (231H).

0235H ~ 0245H In the Model I, 0235H - 0240H contains the routine
to read one byte from the cassette, and 02412 ~ 0260H contains the
routine to get one bit from the cassette. in the Model III,

0235H - 0Z23CH contain the start of the Model III routine to read one
byte from cassette, 023DH - 0242H is part of the routine that begins
at 0287H (writes cassette leader and sync byte), 0243H - 024CH is the
actual start of the routine to search for the cassette leader and sync
byte, 024DH - 0252H is the actual start of the routine to write a byte
to tape, and 0253H - 025EH is a subroutine used by the system to
select 500 or 1500 baud tape speed.

02474 - 02B5EH See above.

02648 ~ 02828 In the Model I, 0264H - 0283H contains the routine
to output one byvte to the cassette. In the Mcdel 111, 0264H - 0266H
contains a jump to 024DH (the start of the Model III routine to output
one byte to cassette), followed by time data (60 seconds, 60 minutes,
24 hours) at 0266H - 0268H, followed by twelve bytes which contain the
length of each of the twelve months (0264H - 0274H). This is followed
by two NOPs, then starting at 0277H is a 1DH byte, a 1EH byte, the
message "Diskette?”, and finallyv a 03H byte (at 0282H).

(2848 ~ 02A7H In the Model I, this area contains several cassette
I/0 routines, including turn on cassette, write leader and sync byte
(0284H); write leader and sync byte (0287H); turn on cassette, search
for leader and sync byte (0293H); search for leader and sync byte
(0296H), put 2 asterisks in upper right corner of video (part of
previous routines, begins at 029FH). 1In the Model III, 0284H contains
a Jp 0287H instruction (faster than three NOPs), while 0287H is the
start of the routine to turn on the cassette, write leader and sync
byte. 028DH - 0292H contains the fast routine to check if BREAK is
depressed, 0293H contains a JP 0243H instruction, while 0296H
contains a JR 0243H (0243H is the actual start of the routine to turn
on the cassette, search for leader and sync byte). 0298H -~ 02A0H is
the machine language routine to turn on the built-in clock display (in
the upper right hand corner of the video display), while 02A1H - 02A8H

Page 81

TRS-80 ROM Routines Documented Appendix I

is the location of the corresponding routine to turn the clock display
back off.

02E2H - 02E4H This is part of the SYSTEM tape load routine. 1In
the Model I, these locations contain a JR NZ,02D1H instruction
followed by an INC HL instruction. In the Model III, these

instructions have been in effect reversed (INC HL followed by JR
NZ,02D1H). Since this area is not referenced by any other part of the
ROM, I can only guess that this change may have been implemented in
order to correct some problem that occured while reading the filename
on a SYSTEM tape.

03C2H - 03E9H Start of I1I/0 driver area which has been totally
rearranged in the Model III. Specifically, in the Model I the area
from 03C2H through O05D0H was arranged as follows: (03C2H - O03E2H is
the I/0 driver entry routine, O03E3H - 0457H is the keyboard driver
routine, 0458H - 058CH is the video driver routine, and 058DH - 05DOH
is the line printer driver routine. In the Model III, 03C2H - 0451H
is the 1line oprinter driver routine, 0452H - 0468H is the actual
location of the routine to initialize all I/0 drivers, 046BH - 0472H
is a routine used by the RUN/EDIT/NEW commands toc unprotect the video
display and to load HL with the start of BASIC program pointer at
40A4H - 40A5H, and 0473H - O05D0OH is the video driver routine (just in
case you're wondering, the keyboard driver begins at 3024H in the
Model III).

03EBH -~ 0468H See above.

046BH ~ 0494H See above.

0496H ~ 049EH See above.

04A0H - Q04B7H See above.

04B9H - 050CH See above.

050EH - 0532H See above.

0534H -~ O5CFH See above.

05D1H - 05D3H This change appears to be malicious destruction of

the "printer ready" test routine found at 05D1H - 05D8H in the Model
I. In the Model III, the first three bytes of the routine are changed
from a LD A, (37E8H) instruction to 52H, 4FH, and 4EH (LD D,D; LD C,A;
and LD C,(HL); or the ASCII characters "RON"). The entire routine
from 05D1H - 05D8H is unused in the Model III, so I can't understand
why Microsoft didn't just leave these three bytes unchanged - the
routine would have still worked and it would have been one less area
of incompatibility between the two Models. An equivalent routine that
does work (and which would also have fit nicely into this space)
resides from 044BH to 0451H in the Model III (part of the printer
driver routine).

0674H - 0707H In the Model I, this is part of the power-up routine
and includes the disk bootstrap routine (06AlH - 06CBH), the preferred
BASIC re-entry routine (06CCH - 06D1H), and the RST vectors and I/0
Device Control Blocks which are relocated to RAM on power-up
(06D2H - 0707H, relocated to 4000H - 4035H). In the Model III, this
area contains the I/0 driver entry routine (0674H - 0699H) and
additional code used by the LIST and LLIST commands (069AH - 0707H).
Note that a jump to 06CCH will no longer get you back into BASIC in
the Model III. This might be considered a major blunder in the design

Page 82

TRS-80 ROM Routines Documented Appendix I

of the Model III ROM, both because so many available programs use this
re-entry point to BASIC, and because the ROM itself has two jumps to
06CCH (one at 0072H that appears to be unused, and one at 02C3H, which
is used if the BREAK key is pressed under the SYSTEM command - a bona
fide BUG in the Model III ROM). A substitute re—-entry to BASIC that
will work with either model is to LD BC,1Al18H and then JP 19AEH (this
is the code presently found at 06CCH in the Model I).

124CH - 124DH This change first appeared in the "new"” ROMs for the
Model I. The order of two instructions (OR A and POP DE) have been
reversed for no apparent reason.

1918H - 1918H 19178 - 1918H contains 434CH in the Model I, 444CH
in the Model III. This value is loaded to 40A0H (the start of string
space pointer) during power-up.

191CH - 191CH 191BH - 191CH contains 42E9H in the Model I, 43E%H
in the Model III. This value is loaded to 40A4H (the start of BASIC
program pointer) during power-up.

1BSDH - 1B5FH Part of the RUN, NEW, EDIT, etc. commands; in the
Model I these three bytes contain a LD HL, (40A4H) instruction (resets
HL to point to the start of the BASIC program). In the Model III,
this has been replaced by a CALL 046BH instruction, which unprotects
the video display in addition to resetting HL to the start of the
BASIC program,

206DH - 206DH All of the changes from 206DH - 20F7H first appeared
in the "new" ROMs of the Model I. The changes were made to allow the
use of multiple @'s in a PRINT statement.

2073H - 2073H See above.
2075H - 2075H See above.
20778 - 20BS8H See above.
20BCH - 20BCH See above.
20F7H - 20F7H See above.
213BH - 213BH This also first appeared in the "new” ROMs of the
Model I, as part of an AND 7FH instruction located at 213AH. 1In the
original version the instruction was AND 3FH. The operand of the

instruction sets the maximum argument for the TAB function, thus the
early TRS-80's could only handle a maximum TAB (63) while the latest
Models can go as high as TAB (127).

2167H - 2167H Another "new"” ROM change, this corrects a jump back
into the revised PRINT command routine.

2B85H - 2B88H This change is to the LIST command. JP 069AH in the
Model III replaces LD D,0FFH followed by JR 2B8CH in the Model I.

2B8CH - 2B8EH Another change to LIST. In the Model I three
instructions occupied this area: LD A, (HL); OR A; INC HL. In the Model
III the INC HL instruction is moved to the beginning of the three.

2B91H - 2B93H The final change to LIST - a JP P,2B89H instruction
in the Model I is changed to a JP 302DH instruction in the Model III.

Page 83

TRS-80 ROM Routines Documented Appendix I

2ClFH -~ 2C42H Another change that originated in the "new"™ ROM
Model I modified the CLOAD command (changed the order of portions of
the CLOAD routine, disallowed CLOAD from cassette drive #2, etc.).

2C7AH -~ 2C7FH Also part of CLOAD, this change turns off the tape
before printing READY on the video display. In the Model I, the code
from 2C7AH -~ 2C82H consisted of the instructions LD HL,1929H; CALL

28A7H, CALL O0lF8H. 1In the Model III the CALL to 0lF8H has been moved
to the beginning of these instructions.

2C81H - 2¢82H See above.

2C8AH - 2C8CH This is part of the CLOAD? routine used when a bad
byte has been read from the tape. In the Model I, a LD HL,Z2CASH
instruction is found here (loads HL with the starting address of the
"BAD" message), while the Model III uses a CALL 31BDH instruction,
which does some housekeeping in addition to pointing HL to the "BAD"
news.

3000H - 37FFH This portion of memory is non-existant in the Model
I (except that in the Model I, some hardware devices are “"memory
mapped” to the area from 37E0H - 37FFH). However, some words about
this area are in order. First of all, in the Model III the area from

3000H through 3044H contains jump vectors to routines located in the
remainder of the top 2K of ROM. Apparently "routines got legs", that
is, they are subject to being moved around in different revisions of
the ROM. At least three different versions of this added 2K of ROM
have appeared, and the locations of a few of the routines have been
moved slightly. So, you are advised to enter routines through the
vectors where possible. Here 1is a list of the routines available
through these vectors:

3000H Write 500 baud cassette leader and sync byte.

3003H Write 1500 baud cassette leader and sync byte.

3006H Search for 500 baud cassette leader and sync byte.

3009 Search for 1500 baud cassette leader and sync byte.

300CH Turn off cassette.

300FH Turn on cassette.

3012H Disk bootstrap routine.

30158 Power~-up routine (jump here from 0002H).

3018H Maskable interrupt handler.

301BH RS-232~C initialization driver routine.

301EH RS~232~C input driver routine.

3021H RS-232-C output driver routine.

3024H Keyboard driver routine.

3027H 1I/0 Route driver routine (not available on Model 4).

302AH Part of routine to search for cassette leader and sync
byte {(jumps here from 0229H).

302DH Part of LIST command (jumps here from 2B91H).

3030H Basic TIMES function routine.

3033H S$DATE routine (date to 8-character buffer pointed to by HL).

3036H STIME routine (time to 8-character buffer pointed to by HL).

30398 Non-maskable interrupt handler.

3042H S$SETCAS routine (prompt user to set cassette baud rate).

Page 84

TRS-80 ROM Routines Documented Appendix I

The upper 2K of ROM also contains lookup tables for the keyboard
and line printer drivers. This strikes me as being quite wasteful of
memory that could be put to better use, particularly since the Model I
did not rely on the use of such tables. Not only that, but there are
separate tables for use with the keyboard driver, depending on whether
or not the SHIFT key is pressed, and on whether or not the "CAPS LOCK"®
feature is enabled. The printer lookup table is particularly wasteful
of memory, since this table occupies the area from 3145H to 31A4H, vet
only one character is changed through the use of the table (a 60H
SHIFT-@ character is changed to a 40H unshifted @ character before
being output to the printer - and in the Model 4, even this
one-character change has been eliminated, yet the table remains)!

One change that has NOT been made in current editions of the
Model III ROM, but which I had said would surely appear in any future
revisions, is to change the code at memory locations 0348H -~ 034CH.
This code is a holdover from the Model I, and is used to test whether
or not the video display is currently in the 32-character mode.
Presently it is LD A, (403DH) followed by AND 08H, but unfortunately,
in the Model III memory location 403DH no 1longer holds the
32~-character flag. To perform the test properly, this code will have
to be changed to LD A, (4210H) followed by AND 04H. This is another
BUG in the Model III ROM, and is responsible for the improper
operation of the TAB function while the video display is in the 32
character mode. I had thought that surely Tandy would fix this bug as
soon as possible, but apparently I overestimated their dedication,
because we're now up to the Model 4 and the bug still resides right
there in the ROM, as if glued to the silicon!

The information presented above should help yvou determine what
areas of the Model III ROM may cause problems with programs designed
to run on a Model I.

In preparing this article, I found a book entitled "MOD III ROM
COMMENTED" by Soft Sector Marketing gquite helpful. As the title
implies, it is nothing more or less than a disassembled listing of the
Model III ROM, with almost every instruction commented. Although I
noticed a few minor errors (incorrect digits crept into a few hex
addresses), for the most part the book is accurate. If you are
converting Model I programs to run on the Model III, you would find
the going much easier with a copy of this book handy. 1In my opinion,
the price was a bit steep ($22.50), but if time is money to you, you'd
probably find the time saved by having the commented code is worth the
price of the book. Unfortunately, due to the untimely demise of Soft
Sector Marketing, "MOD III ROM COMMENTED" is no longer in print. If,
by chance, you come across someone who has a copy and who is willing
to part with it, by all means buy it if you can!

Page 85

TRS-80 ROM Routines Documented Appendix II

APPENDIX II
ROM DIFFERENCES BETWEEN THE MODELS III AND 4

The Model 4 was designed to be fully compatible with software
developed for the Model 3, and generally speaking, it meets that goal.
The Model 4 uses stock Model 3 ROMs for the first 12K of memory - that
is, there is NO difference in the code at memory locations 0000H
through 2FFFH between the Models III and 4. However, the upper 2K of
ROM (memory locations 3000H through 37FFH) has been somewhat modified.
The most significant changes in that area of memory are as follows:

1. The I/0 router routine is no longer present in the ROM.

2. The keyboard scan routine has been significantly altered, in
order to make the additional keys on the Model 4 keyboard fully
functional.

3. Some of the other routines within the Model 4 ROM have been
moved around, or changed slightly.

Note that with the exception of the re-router routine (entry
point at 3027H) and a redundant relative jump to the bootstrap routine
(at 3040d), all of the routine vectors at 3000H through 3044H still
work normally. This means that as long as entry is made to the
routines in the upper 2K of memory only through the use of these
vec.ors, a program that runs properly on the Model III should need no
modification to run on the Model 4 (in the Model III mode, of
course) .

It should not be considered good practice to jump into the area
of memory from 3045H - 37FFH, as this area is subject to change at any
time! This was true of the Model III ROMs, as routines in the upper
2K of memory were moved about slightly with each new release of the
ROM. Some routines seem to be fairly stable (the cassette routines,
for example), but where a vector is available to enter a routine, use
it! You will save yourself much grief at a later date.

If it should become necessary to have a user program determine
which Model computer it is running on (III or 4), I suggest that the
easiest and safest test would be to check location 3029H. This
location will always contain a zero byte on a Model 4, but will
contain 37H on the Model III. Since this is part of the vector to the
I/0 re-router routine, which has been eliminated in the Model 4, I
doubt that the contents of this location will be changed in any future
release of the Model 4 ROM. Suggested assembly language code for this
test would be as follows:

LD A, (3029H)

OR A
(Z flag set if running on Model 4)

Under BASIC, a statement similar to the following would do the
trick:

IF PEEK (12329) = 0 THEN ... (running on Model 4)

Page 86

TRS-80 ROM Routines Documented Appendix II

In the 1list of changes below, general differences between the
Model III and Model 4 ROMs are shown. Note that since we are
comparing one version of the Model III ROM with one version of the
Model 4 ROM (either of which could be available in other versions), I
am not attempting a "byte by byte" comparison. Rather, in cases where
the code is mostly different but one or two consecutive bytes are by
coincidence the same, I have simply included those bytes within the
block of "changed" code. Even then, between any two versions of the
Model III and Model 4 ROMs there may exist differences not noted here.
The main purpose of this appendix is to give the reader a general idea
of which routines have been changed and/or moved, but should not be
considered an absolute guide to those changes.

ROM CHANGES IN THE MODEL 4:

3013H - 3013H Part of JP instruction that begins at 3012H (start
of warm bootstrap routine changed to 3461H).

3016H - 3016H Part of JP instruction that begins at 3015H (start
of cold bootstrap routine changed to 3401H).

3027H - 3029H JP to I/0 re-router routine has been changed to RET
instruction followed by two NOPs. 1I/0 re-router no longer exists in
Model 4 ROM.

302EH - 302EH Part of JP instruction that begins at 302DH (start
of patch to LIST command routine changed to 37A4H).

3031H - 3031H Part of JP instruction that begins at 3030H (start
of TIME$ function routine changed to 37C2H).

303EH - 3041H Part of JP instruction that begins at 303DH (entry
point to this portion of Non-Maskable Interrupt routine changed to
34CEH), followed by two unused bytes (formerly JR 3015H instruction,
now changed to two XOR D instructions).

3043H - 3044H Part of JP instruction that begins at 3042H (start
of $SETCAS routine changed to 310BH).

3060H - 3064H Formerly part of keyboard scan routine, now replaced
by five NOP instructions.

307DH - 3084H Formerly part of keyboard scan routine, now replaced
by eight NOP instructions.

30A0R -~ 30A4H Formerly part of keyboard scan routine, now replaced
by five NOP instructions.

30BDH - 30C4H Formerly part of keyboard scan routine, now replaced
by eight NOP instructions.

30ECH - 30E4H Formerly part of keyboard scan routine (CALLed
screen print routine at O01D9H, then did an XOR A followed by a RET
instruction in order to return a null character), now replaced by five
NOP instructions.

Page 87

TRS-80 ROM Routines Documented Appendix II

30FDH - 3144H Formerly part of the keyboard scan routine (included
three subroutines and two lookup tables), now replaced by eight NOP
instructions (30FDH - 3104H), a portion of the non-disk bootstrap

routine that prompts the user to set the cassette baud rate
(3105H - 310AH), the $SETCAS routine which prompts the user to set the
cassette baud rate (310BH - 313AH), and a portion of the keyboard scan
routine which CALLs the screen print routine at 34FDH, then executes
XOR A and RET instructions to return a null character (313BH - 313FH).
The final five bytes (3140H through 3144H) are now NOP instructions.

3185H - 3185H Part of the totally unnecessary printer lookup
table. This table formerly took up 96 bytes to convert one character
before sending it to the printer (an ASCII 60H shift-@ character was
converted to an ASCII 40H normal @ character). Guess what? It
doesn't even do that anymore! The byte at 3185H has been changed from
40H (normal @) to 60H (shift-@). Now, all characters are "converted”
to their original values before being output to the printer. That
doesn't make sense to you? Good! It shouldn't! Apparently it made
sense to someone at Microsoft, though, because it still appears in the
Model 4 ROM. As Dave McGlumphy of the Chattancoga Microcomputer Club
once said, "You don't have to be sane to be a programmer. In fact, it
doesn't even help®.

338EH - 3528H The largest block of changed code. This portion of
memory formerly included most of the keyboard scan routine
(338EH -~ 3454H), the bootstrap routine (3455H - 3517H), a short

time~delay routine used by the bootstrap routine (3518H - 351BH), the
Non-Maskable Interrupt handler routine (351CH - 3527H), and an unused
FFH byte (3528H). This area now contains part of the keyboard scan
routine (338EH - 3400H), the bootstrap routine (3401H - 34CDH), the
Non-Maskable Interrupt handler routine (34CEH - 34D9H), more of the
keyboard scan routine (37DAH - 34FCH), a new screen print routine used
when the control and asterisk keys are pressed (34FDH - 351EH), and
ten NOPs (zero bytes at 351FH through 3528H).

36D6H —~ 36D6H This byte is moved to reserved RAM location 402CH
(part of the printer Device Control Block) during power up. This
location formerly contained the letter "R" (probably leftover garbage
from the Model I "PR" designator) but now contains a zero byte.

36E0H - 36E6H These seven bytes are moved to reserved RAM
locations 4036H - 403CH during power up. These locations are used by
the keyboard scan routine to store an "image" of the first seven rows
of the keyboard matrix. They are all initialized to contain ARAH bytes
in the Model III (for some unknown reason), but in the Model 4 they
are correctly initialized with zero bytes.

36FFH - 3700R Two bytes that are moved to RS-232 Input Device
Control Block (locations 41EBH & 41ECH) during power up. These bytes
formerly contained the ASCII characters "RI" (designator for "RS-232
input"), but now contain the ASCII character codes that will be
returned when the "Fl1l" or "F2" keys are pressed. 36FFH contains 60H
(a shift-@ character), which will be loaded into 41EBH as the
character returned when the "Fl1" key is pressed, while 3700H contains
1BH (a shift-up arrow character), which will be loaded into 4lECH as
the character returned when the "F2" key is pressed

Page 88

TRS-80 ROM Routines Documented Appendix II

37074 - 3708H Two bytes that are moved to RS-232 Output Device
Control Block (locations 41F3H & 41F4H) during power up. These bytes
formerly contained the ASCII characters "RO" (designator for ™"RS-232
Output”), but now contain the ASCII character code that will be
returned when the "F3" key is pressed and the "image" for the eighth
keyboard row (the row mapped to 3880H). 3707H contains 08H (a shift-@
character), which will be loaded into 41F3H as the character returned
when the "F3" key is pressed, while 3708H contains a zero byte, which
will be loaded into 41F4H to initialize the storage location used to
store the "image" (current status) of the CAPS, CTRL, and function
keys (Fl, F2, & F3).

370FH ~ 3710H Two bytes that are moved to RS-232 Initialization
Device Control Block (locations 41FBH & 41FCH) during power up. These
bytes formerly contained the ASCII characters "RN" (designator for
"RS-232 iNitialization"), but now contain two zero (00H) bytes.

3731H - 3733H Three bytes that are moved to 421DH - 421FH during
power up. These bytes formerly contained the device type flag and the
driver address, and were part of the I/0 re-router Device Control
Block. As previously mentioned, the I/0 re-router routine has been
eliminated from the Model 4 ROM.

3739H - 37E7H This area of memory formerly contained the I/0
re~router routine (3739H - 377AH), a patch to the LIST command routine
(377BH - 3798H), the TIMES function routine (3799H - 37AEH), a portion
of the non-disk bootstrap routine that prompted the user to set the
cassette baud rate (37AFH - 378B4H), the SSETCAS routine
(37B5H - 37DBH), another portion of the non-disk bootstrap routine,
which put the address of the TIME$ routine into the vector at 4177H

(37DCH - 37E4H), and three unused AAH bytes (37E5H - 37E7H). In the
Model 4, this area now contains a good portion of the keyboard scan
routine (3739H - 37A3H), a patch to the LIST command <routine

(3784H -~ 37ClH), the TIMES function routine (37C2H - 37D7H), more of
the keyboard scan routine (37D8H - 37E0H), a short time-delay routine
used by the disk bootstrap routine (37ElH - 37E4H), and three unused
zero bytes (37E5H - 37EVH).

37EAH - 37EAH Computer version flag in Model III, unused (zero
byte) in Model 4.

37F4H - 37FFH Part of the power up routine. In the Model III,
37F4H - 37F5H contains a JR 37DCH instruction, followed by the text
for the "Cass? " prompt (37F6H - 37FDH) and two unused AAH bytes
(37FEH - 37FFH). In the Model 4, the code that used to begin at 37DCH

(a portion of the non-disk bootstrap routine, which puts the address
of the TIMES routine intc the vector at 4177H) has been moved down to
37F4H - 37FCH, so the JR instruction is no longer needed.
37FDH -~ 37FFH appear to contain unused code in the Model 4 (two PUSH
HL instructions followed by RST 38H).

Page 89

TRS-80 ROM Routines Documented Appendix III

APPENDIX III

MODEL I ROM CHANGES

There are four known versions of the Model I ROM. Each new
version was released to fix some bug that appeared in earlier
versions, or to enhance the capabilities of the computer. In any

event, all known changes between the earliest Model I ROMs and the
last edition to appear (the so-called "new" ROMs) are shown below.
This information may prove useful when writing a program intended to
be run on any Model I TRS-80.

FIRST EDITION MODEL I ROM: LAST EDITION MODEL I ROM:
0059 ORG 0059H 0059 ORG 0059H
0059 1A DEFB 1AH 0059 00 DEFB 00H

This byte is located in a table used by the keyboard scan routine. It
defines the ASCII character returned when the SHIFT-down arrow keys
are depressed. In new ROM Model 1I's, this combination is used to
produce control characters, thus the SHIFT-down arrow combination by
itself does not return an ASCII character when depressed.

00FC ORG 00FCH 00FC ORG 00FCH
00FC 211101 LD HL,0111H 00FC 210E01 LD HL,010EH

Here HL is pointed to the start of the "RADIO SHACK LEVEL II BASIC"
message. However, in new ROM units this message has been shortened to
"R/S L2 BASIC" and begins in a different location.

0105 ORG 0105H 0105 ORG 0105H
0105 4D DEFM *MEMORY SIZE' 0105 4D DEFM 'MEM SIZE’
45 4D 4F 52 59 20 53 49 45 4D 20 53 49 5A 45
5A 45 010D 00 DEFB 00H
0110 0O DEFB 00H 010E 52 DEFM
0111 52 DEFM 'R/S L2 BASIC
'RADIO SHACK LEVEL II BASIC' 2F 53 20 4C 32 20 42 41
41 44 49 4F 20 53 48 41 53 49 43
43 4B 20 4C 45 56 45 4C 011Aa OD DEFB ODH
20 49 49 20 42 41 53 49 011B 00 DEFB 00H
43 0l1l1lc ¢C5 PUSH BC
012B OD DEFB ODH 011D 010005 LD BC,0500H
g12c 00 DEFB 00H 0120 cp6000 CALL 0060H
0123 C1 pPOP BC
0124 OA LD A, (BC)
0125 A3 AND E
0126 C8 RET Z
0127 7A LD A,D
0128 07 RLCA
0129 07 RLCA
012A C3FEO03 JP 03FEH

Page 90

TRS5-80 ROM Routines Documented Appendix IIT

The above area has been changed to make room for the keyboard debounce
routine of the new ROMs. 1In the old ROMs, the messages "MEMORY SIZE?"
and "RADIO SHACK LEVEL II BASIC" are in this area, while in the new
ROMs this has been changed to "MEM SIZE?" and "R/S L2 BASIC", which
is followed by the debounce routine.

0248 ORG 0248H 0248 ORG 024 8H
0248 0641 LD B,41H 0248 0660 LD B,60H
024F ORG 024FH 024F ORG 024FH
024F 0676 LD B,76H 024F 0685 LD B,85H

The above two changes correct the timing of the "read one bit from
cassette" routine, in order to make loading data from cassette easier
and more reliable. »

02E2 ORG 02E2H 02E2 ORG 02E2H
02E2 23 INC HL 02E2 20ED JR Nz ,O02D1H
02E3 20EC JR NZ,02D1H 02E4 23 INC HL

This is a change in the routine that reads a filename from a SYSTEM
tape. It is interesting to note that the Model III ROM forsakes the
"new ROM" code, and returns to the original coding of the oldest Model
I ROMs.

03FB ORG 03FBH 03FB ORG 03FBH
03FB 7A LD A,D 03FB C31C01 Jp 011CH
03FC 07 RLCA
03FD 07 RLCA

Part of the keyboard scan routine. In the new ROM a jump to the new
keyboard debounce routine is inserted here.

0683 ORG 0683H 0683 ORG 0683H
0683 20EF JR NZ,0674H 0683 20F1 JR Nz,0676H
This is part of the power-up sequence. Some initialization data is

copied from ROM into reserved RAM 128 times, in order to make sure
that the memory chips are stable enough to receive and store the data
properly. Unfortunately, on the earliest ROMs this jump (which was
executed 128 times) went back one instruction too far, to an OUT
(0FFH) ,A instruction. This caused the cassette relay to buzz during
power-up.

1226 ORG 1226H 1226 ORG 1226H
1226 EA3412 JP PE,1234H 1226 300B JR NC,1 233H
1229 014391 11D BC,9143H 1228 014391 11D BC,9143H
122C 11F94F 1D DE, 4FF9H 122B 11F94F 1D DE, 4FF9H
122F CDOCOA CALL 0AOCH 122E CDOCOA CALL 0A0CH
1232 1806 JR 123AH 1231 1806 JR 1239H
1234 116Cl3 1D DE,136CH 1233 116Cl3 LD DE, 1 36CH

Page 91

TRS-80 ROM Routines Documented

1237 CD490A CALL 0A49H 1236
123A F24cl2 gp P,124CH 1239
123D F1 POP AF 123cC
123E CDOBOF CALL O0FOBH 123D
1241 F5 PUSH AF : 1240
1242 18E1 JR 1225H 1241
1244 F1 POP AF 1243
1245 CD180F CALL 0Fl8H 1244
1248 F5 PUSH AF 1247
1249 CcD4F12 CALL 124FH 1248
124Cc F1 pPOP AF 124B
124p D1 POP DE 124c

124D

CD430A
F24B12
Fl
CDOBOF
F5
18E2
Fl
CD180F
F5
CD4Fl2
Fl

Dl

B7

CALL
Jp
POP
CALL
PUSH
JR
POP
CALL
PUSH
CALL
POP
POP
OR

Appendix IIIX

0R49H
P,124BH
AF
0F0BH
AF
1225H
AF
OFL8H
AF
124FH
AF

DE

A

An invalid test for a double precision number was corrected by this
fix,. Most instructions are the same, but are just moved down one

address in the new ROMs.

1265 ORG 1265H 1265
1265 F24412 gp P,1244H 1265

This corrects a jump back into the part of
the new ROMs.

206C ORG 206CH 206C
206C C39B20 Jp 209BH 206C
206F CDCA4l CALL 4ican 206F
2072 FE40 cp 40H 2072
2074 2019 JR © NZ,208FH 2074
2076 CDO12B CALL 2B01H 2076
2079 FEO4 cp 04H 2079
207B D24AlE Jp NC,1E4AH 207¢C
207E E5 PUSH HL 207D
207F 21003C LD HL,3CO0H 207E
2082 19 ADD HL,DE 2081
2083 222040 1D (4020R) ,HL 2084
2086 7B LD A,E 2086
2087 E63F AND 3FH 2088
2089 32A640 1D (40Aa6H) ,A 208a
208C E1 POP HL 208D
208D CF RST 08H 208F
208E 2C INC L 2092
208F FE23 CP 23H 2093
2091 2008 JR NZ,209BH 2096
2093 CD8402 CALL 0284H 2097
2096 3E80 LD A,80H 209Aa
2098 329Cc40 LD (409CH) ,A 209B
209B 2B DEC HL 208D
209C D7 RST 10H 20A0
209D CCFE20 CALL Z,20FEH 20A1
20A0 CA6921 Jp Z,2169H 20A2
20A3 FEBF CP O0BFH 20A3
20A5 CABD2C Jp Z,2CBDH 20A5
20A8 FEBC cp 0BCH 20a6
20AA CA3721 Jp Z,2137H 20A8
20AD E5 pUSH HL 20AB

Page 92

F24312

ORG
JP

1265H
P,1243H

ROM that was moved down in

c37cC20
CbCadl
FE23
2006
CD8402
329C40
2B

D7
CCFE20
CA6921
F620
FE60
201B
CD012B
FEO4
D24AlE
E5
21003cC
19
222040
7B
E63F
32A640
El

CF

2C
18c7
7E
FEBF
CABD2C
FEBC

ORG
Jp
CALL
cp
JR
CALL
LD
DEC
RST
CALL
JP
OR
cp
JR
CALL
Cp
Jp
PUSH
LD
ADD
LD
LD
AND
LD
POP
RST
INC
JR
LD
cp
JF
cp

206CH
207CH
41CAn
23H
NZ,207CH
0284H
(409CH) ,A
HL

10H
Z,20FEH
Z,2169H
20H

60H
NZ,20A5H
2B01H
04n
NC,1E4AH
HL
HL,3CO00H
HL,DE
(4020H) ,HL
A,E

3FH
(40A6H) ,A
HL

08H

L

206CH

A, (HL)
0BFH
Z,2CBDH
0BCH

TRS-80 ROM Routines Documented Appendix IIX

20AE FE2C Cp 2CH 20AD CA3721 Jp Z,2137H

20B0 Ca0821 JP Z,2108H 20B0 E5 PUSH HL

20B3 FE3B CP 3BH 20B1 FE2C Ccp 2CH

20B5 Ca6421 Jp Z,2164H 20B3 2853 JR Z,2108H

20B8 C1 POP BC 20B5 FE3B Ccp 3BH

20B9 CD3723 CALL 2337H 20B7 285E JR Zz,2117H

20BC E5 PUSH HL 20BYS CD3723 CALL 2337H
20BC E3 EX (sP) ,HL -

The above changes affect the PRINT routine, and allow the @ character
(of a PRINT € statement) to be placed in the PRINT line at places
other than immediately following the PRINT command. &lso, multiple @
specifiers may be used within a single PRINT statement line.

20F6 ORG 20F6H 20F6 ORG 20F6H

20F6 C39B20 JP 209BH 20F6 C37C20 Jp 207CH

This corrects a Jjump back into the revised portion of the PRINT
routine.

213A ORG 213AH 213A ORG 213AH

213A E63F AND 3FH 213Aa E67F AND 7FH

This instruction defines the maximum valid argument for the TAR
function (63 decimal in the old ROM, 127 decimal in the new ROM) .

2166 ORG 2166H 2166 ORG 2166H

2166 C3A020 Jp 20A0H 2166 C38120 Jp 2081 H

Another jump back into the changed portion of the PRINT routine that
had to be fixed in the new ROM.

226A ORG 226AH 226A ORG 226 AH
226A 3RAA940 LD A, (40A9H) 226a 00 NOP
226D B7 OR A 226B 00 NOP
226E C8 RET Z 226C 00 NOP
226D 00 NOP
226E 00 NOP

This was the source of the (in)famous POKE 16553, 255 fix sometimes
required on early TRS-80's. My guess is that the routine originally
placed here may have been written to suppress printing of an "EXTRA
IGNORED" message when input came from the cassette rather than the
keyboard. Due to the undesirable side effects, the test of location
40A9H was eliminated in later versions of the ROM.

2C1F ORG 2C1lFH 2C1lF ORG 2C1FH
2C1F CD9302 CALL 0293H 2C1lF D6B2 SUB 0B2H
2C22 TE LD A, (HL) 2C21 2802 JR Z,2C25H
2C23 D6B2 SUB OB2H 2C23 AF XO0OR A

2C25 2802 JR Z,2C29H 2C24 01 DEFB 01H

Page 93

TRS~-80 ROM Routines Documented Appendix III

2C27 AF XOR A 2C25 2F CPL

2cz28 01 DEFB O1lH 2C26 23 INC HL

2C29 2F CPL 2C27 F5 PUSH AF

2C2A 23 INC HL 2C28 7E LD A, (HL)
2C2B F5 PUSH AF 2C29 B7 OR A

2C2C 2B DEC HL 2C2A 2807 JR Z,2C33H
2C2D D7 RST 108 2C2C CD3723 CALL 2337H
2C2E 3EQ0 LD A,00H 2C2F CD132A CALL 2A13H
2C30 2807 JR Z,2C39H 2C32 1A LD A, (DE)
2C32 CD3723 CALL 2337H 2C33 6F Lb L,A

2C35 CD132A CALL 2A13H 2C34 F1 POP AF

2C38 1A LD A, (DE) 2C35 B7 OR A

2C39 6F LD L,A 2C36 67 Lb H,a

2C3A F1 POP AF 2C37 222141 1D (4121H) ,HL
2C3B B7 OR A 2C3A CC4D1B CALL Z,1B4DH
2C3C 67 LD H,A 2C3D 210000 LnD HL,0000H
2C3D 222141 1D (4121H) ,HL 2C40 CD9302 CALL 0293H
2C40 CC4D1B CALL Z,1B4D

Changes to the CLOAD command under the new ROM permit the user to
CLOAD from tape drive # 1 only, but allow a filename to be specified
when CLOADing while operating under Disk BASIC.

2FFB ORG 2FFBH 2FFB ORG ZFFBH
2FFB 00 NOP 2FFB DEC3 5BC 4,0C3H
2FFC 00 NOP 2FFD C344B2 JpP 0B244H
ZFFD 00 NOP

2FFE 00 NOP

2FFF 00 NOP

These changes appear to be nothing more than leftover garbage that was
inadvertently programmed into the newer ROMs. These final five bytes
are not accessed by any other ROM code.

Page 94

TRS-80 ROM Routines Documented Appendix IV

APPENDIX IV
TRS-80 vs. PMC-80 / VIDEO GENIE / DICK SMITH SYSTEM 80 / TRZ-80

PMC-80, VIDEO GENIE, DICK SMITH SYSTEM 80, and TRZ-80 are all
names used 1in various parts of the world to refer to the same
microcomputer, a TRS-80 "workalike" made by ECCA International of Hong
Kong. Although most programs written for the TRS-80 Model I can be
used directly on the Hong Kong copy without modification, there are a
few differences between the two machines. These differences will
mostly affect machine language programs that contain their own printer
driver, and BASIC or machine language programs that use the right
arrow key or the double width character mode. The following is a
summary of the major differences affecting user software between the
two machines. ©Please keep in mind that the discussion which follows
is applicable to the original edition of the ECCA computer, but may
not be fully applicable to later models.

HARDWARE DIFFERENCES

Two keys that are standard on the TRS-80 Model I are omitted on
the copy - the right arrow key and the CLEAR key. A hardware-oriented
user can easily add these two keys to the copied unit, but they are
not normally included. Because the right arrow is omitted, the method
of switching to the 32 character per line mode has been changed to a

switch on the back of the unit. Switching between the 32~ and
64-character per line modes under software control is not possible,
unless another minor hardware change is made. If a BASIC program

attempts to switch to the 32-character mode (using CHR$(23), etc.) and
the modification is not in place, BASIC will nevertheless think that
the screen is in the 32-character mode and will ignore every other
screen memory location. For many programs using the double width
character mode, this simply means that the screen will be formatted
normally except that the characters will be normal width, and there
will be a space between each character.

The Hong Kong unit has a built in cassette deck which
unfortunately has no volume control. There is a provision to use an
external cassette recorder, but it is mapped to port FEH instead of
port FFH. Selecting cassette drive # -2 (from BASIC or machine
language). will automatically use the external drive. Once again, a
hardware modification can be made to allow the external recorder to
function as cassette drive # -1.

The character generator IC in the Far East machine is uppercase
only, and is not pin compatible with the equivalent IC used in the
TRS-80. This simply means that most users of the foreign micro will
probably not have a lowercase modification installed, although a
dedicated hardware hacker could probably accomplish the conversion
without much difficulty. The printer and cassette select circuitry is
mapped to ports rather than memory locations as will be described
below. There are other minor hardware differences as well (including
the labeling of certain keys), but they will mostly not affect
software compatibility.

Page 55

.

TRS5-80 ROM Routines Documented Appendix IV

ROM SOFTWARE DIFFERENCES

The ROM used in the Hong Kong machine appears to be an almost
exact copy of the version 1.3 Model I TRS-80 ROM (the latest version
of the so-called "old" ROM). The differences between the Model I
version 1.3 ROM and the ROM found in the Hong Kong copy are described
below. Even a program that does not make ROM calls may be affected by
some of the hardware changes that made the ROM changes below
Necessary, so any programmer writing a program intended for use on the
Far East copy should review the few ROM changes below to see if
similar changes are required in their program.

01058 - 0110H First of two power-up messages changed. In the
TRS-80 contains "MEMORY SIZE" followed by a zero byte, while the copy
contains "READY" followed by a space and six zero bytes. The net
effect of this is that the "READY?" prompt that appears on the screen
when Hong Kong unit is first powered-up is actually a "MEMORY SIZE?"
prompt, while all subsequent "READY" prompts really are the BASIC
"READY" prompt that we are familiar with. Score one for confusion!

01118 - 01l2CH Second power-up message changed. In one machine
(quess which one) this area contains "RADIO SHACK LEVEL IT BASICF
followed by a carriage return and zero byte, while the copy contains
twenty-seven carriage returns followed by the zero byte. The effect
here is to scroll the first "READY" prompt (the one that should be
"MEMORY SIZE?") clear off the screen before proceeding (and to
eliminate Radio Shack's name from the ROM).

0212H - 0214H Part of cassette drive select routine. When this
code is executed, the A register contains zero if cassette drive # -1
is to be selected, or 1 if drive # -2 is to be used. In the Model I
contains a LD (37E4H),A instruction, while in the ~copy contains OUT
(FEH) ,A followed by a zero byte (NOP).

05ADH - 05AFH Part of line printer output routine. When this code
is executed, the A register contains a character to be sent to the
printer. In the Model I contains a LD (37E8H),A instruction, while
in the copy contains a zero byte (NOP) followed by an OUT (FDH),A
instruction.

05BBH - 05BDH Also part of line printer output routine. Once
again, when this code is executed the A register contains a character
to be sent to the printer. In the Model I contains a LD (37ES8H),A
instruction, while in the copy contains a zero byte (NOP) followed by
an OQUT (FDH),A instruction.

05D1lH - 05D3H Part of line printer status test. After this code
has been executed, the A register will contain a bit pattern which
indicates whether or not the printer is ready to receive a character.
In the Model I contains a LD A, (37E8H) instruction, while in the
copy contains a zero byte (NOP) followed by an IN A, (FDH)
instruction.

18F5H -~ 18F6H Part of table of two-character strings used for
error messages under non-Disk BASIC. Here the string L3 found in ?he
TRS-80 has been changed to SN in the copy. Thus, the use of a Disk

Page 96

TRS-80 ROM Routines Documented , Appendix IV

i

BASIC reserved word in a non-disk system is reported as an L3 ERROR on
the TRS-80, but simply as a SN ERROR (syntax error) in the imported
unit. :

MEMORY LOCATION / PORT DIFFERENCES

In summary, the following points should be kept in mind: When
defining the cassette drive, memory location 37E4H is used on the
TRS-80 Model I, while port FEH is used on the Hong Kong machine. When
accessing the printer, memory location 37E8H is used by the TRS-80
Model I, and port FDH is used by the foreign copy (in contrast, the
Model III uses port FB8H to access the printer, and does not have
cassette select circuitry). If you have commercial software designed
for the TRS-80 and are trying to use it on the foreign machine, and
the printer or cassette select functions do not work properly, try
searching for the following instructions and making the changes
shown:

SEARCH FOR: - CHANGE TO:
32 E4 37 LD (37E4H) ,A D3 FE ouT (FEH) ,A
00 NOP
32 E8 37 LD (37E8H) ;A 00 NOP
D3 FD ouT (FDH) ;A
3A E8 37 LD A, (37E8H) 00 NOP
DB FD IN &, (FDH)

Page 97

TRS-80 ROM Routines Documented Appendix V

APPENDIX V
RELOCATABLE PROGRAM SAMPLE

Back in issue six of The Alternate Source, an article appeared
explaining how to make your machine language programs relocatable.
What's a relocatable machine language program? It's one that loads
into low memory, then moves itself up to the highest available
unprotected memory and protects that memory. The advantages of that
are that several relocatable programs can co-exist in memory without
conflict and without wasting memory space, and that the user does not
have to preset the MEMORY SIZE for the program. When I wrote that
first article on the subject, I didn't have the process fully
perfected, but even so that article has provided the basis for the
relocation routines that appear in several programs. Since that
article has appeared, I have figured out how to make the assembler do
most of the work, so that the programmer has to do little more than
append the relocation routine to the front of his assembly language
programs.

What follows is an example of a program using the relocation
routine. The program itself is nothing special - it's simply a Model
IIT style line printer driver that can be used with the Model I or the
Model 1III. What is important about the program is the method of
relocation used. This program can be loaded under the BASIC SYSTEM
command, or from the Model I or Model IITI DOS, and it will still
relocate itself and protect itself in high memory.

The code is self-modifying, in that it is set up for use with
cassette BASIC, but if it is loaded from disk it detects this fact and
modifies some instructions within the relocation routine to account
for the difference. Specifically, it must change where it looks for
the top-of-memory pointer stored by the system, which is found at
40B1lH under BASIC, 4049H under Model I DOS, and 4411H under the Model
IIT DOS. The final exit from the relocation routine must also be
changed.

A relocation routine is different from other programs in that it
has only one task to do, and when that task is finished the routine is
discarded by the system. Therefore, we can take some liberties while
writing the routine that we might be hesitant to take otherwise. One
such 1liberty taken 1in this routine is that of the code modifying
itself - for some strange reason, that is considered a sort of taboo
among programmers, presumably because someday they might want to
encapsulate their program in a ROM (how many programs have YOU burned
into a ROM this week?). Well, I never much cared for that old
chestnut, and in this case there's a good argument against it = if the
program were going to be placed in ROM it wouldn't need a relocation
routine, right? So, the relocator modifies itself. Critics are
welcome to rewrite the routine as they see fit.

In most cases you will want to modify the relocation routine to
serve your own purposes. That's OK - this is just a jumping-off point
to demonstrate how it can be done. But you need to know the basics in
order to get going, so here they are:

Page 98

TRS-80 ROM Routines Documented Appendix V

First of all, it's a good idea to start out with a normal (that
is, non-relocatable) version of the program and make sure that all the
bugs are out of it before you attempt to make it relocatable. Once
you know that it works properly, go through the program and find every
absolute JP or CALL instruction in the program that references another
location within the program itself. Add -OFFSET to each such
reference as is done for the CALLs in the program below. You will
also have to do this where you load a register pair with an address
within the program, or where you use a DEFW psuedo-op to reference an
address within the program. DON'T add the -OFFSET to labels
referencing locations OUTSIDE of the program (such as calls or jumps
to the ROM or DOS), and DON'T add the —-OFFSET label to relatiwve jump
instructions (such as JR or DJNZ). You must then make sure that each
of these instructions (the ones with -OFFSET added) are themselves
labeled, so that they can be placed in the relocator table.

You must also make sure that the lines labeled OFFSET and END are
in their proper locations. OFFSET goes just before the first
instruction of the main program, and END goes at the very end of the
program. And, if the program contains an initialization segment that
is used only once, you'll probably want to move that segment to the
exit of the relocator routine.

As shown in the example program, a table must be provided that
contains pointers to all of the addresses that will need to be changed
after relocation. This table must be placed prior to the start of the
main program (you don't want to save the table with the program to be
relocated, do you?). When building the relocation table, note that
the table entries must point to the first byte to actually be changed.
This means that either no offset, or an offset of zerc or one may have
to be added to each label. Here's an example of what the table entry
might look like for various instructions:

Instruction: Relocation table entrv:
GOTHER JP ELSWHR~-QOFSET GOTHER+1

GOSUB CALL BELL-OFFSET GOSUB+1

STRDAT LD DE, (STORIT-OFFSET) STRDAT+2

WORD DEFW PRGLOC—~-OFFSET WORD

Note that the DEFW instruction is not offset because the label address
is also the first byte to be changed. Conversely, the LD DE
instruction is four bytes 1long, so we must add two to the label
address in order to get the first byte to be changed. JP and CALL
instructions always have +1 added. The final entry in the reloccation
table must be a DEFW 0 instruction to mark the end of the table.

One important portion of the relocation routine remains to be
dealt with, and that is the exit routine. At line 520 a jump is taken
if the end of the relocation program has not been reached. Thus, what
follows (lines 530 to 660 in this case) is the exit routine for the
relocator. This 1is probably the only portion of the relocation
routine that cannot simply be copied from program to program. Rather,
it must be customized to the requirements of the program being
relocated. On entry to this portion of the program, the DE register
pair contains the address of the first byte of the relocated program,

Page 99

TRS-80 ROM Routines Documented Appendix V

which will wusually be the entry point address. If that isn't the
case, the entry point can be calculated as follows: First, label the
entry point (we'll use the label ENTRY in this example. Then simply
use the following code to calculate the relocated entry point
address:

LD HL,ENTRY-OFFSET ;# bytes from pgrm start
ADD HL,DE ;HI=relocated entry addr

After the above segment is executed HL will contain the relocated
entry point address.

In any event, once the entry point address is known, it can be
used as desired. In this case we are patching it into the printer
Device Control Block. Depending on the intended use of the program,
you may wish to patch it into a vector used by BASIC (however, note
that the contents of most of these are destroyed when Disk BASIC is
entered), or you may wish to simply convert the entry address to ASCII
and display it on the video display, so that the user can access the
program as he sees fit. You may also do any other required
initialization of the program prior to actually exiting the routine,
as has been done here by resetting other counters located in the
printer DCB (doing one-shot intitialization from within the relocator
program saves memory space, since the initialization routine is then
discarded after use along with the relocator). The code after that
(LD BC,1A18H followed by JP 19AEH) is the best return to BASIC that
will work on both the Model I and the Model ITI, but i1f the routine
was entered from DOS then some previously executed code will have
modified this JP instruction to JP 402DH, the normal return to DOS
READY.

A couple of other quick points: The routine is ORGed at 7000H,
which is wusually high enocugh to clear Disk BASIC. Also, the main
program can overlap itself while being moved to higher memory, since
it is moved starting at the end of the program and working backwards
(using an LDDR instruction).

The relocation routine can be simplified somewhat if the main
program is not intended to have universal application (for example,
the DOS entry tests could be removed in a utility designed to work
with cassette BASIC only). It invites <customization by the
programmer. If you are thinking about marketing a program, you should
seriously consider using a relocation routine if the program normally
resides in high memory, as this will make your program more salable,

The sample assembly language program listing follows:

Page 100

TR5~80 ROM Routines Documented

7000
7000
7001
7002
7005
7006
7007
7009
7008
700E
7011
7012
7014
7017
7014
701D
7020
7024
7027
7028
702E
7030
7034
7035
7037
703A
703D
703E
JO3F
7041
7042
7045
7048
7049
7044
704E
J04F
7052
7053
7054
7055
7056
7058
7058
705C
705D
705E
705F
7061
7062
7064
7065
7067
7068

AF

3D
112D40
El

E5
ED52
2019
214940
3A5400
3D
2803
211144
222970
223270
224C70
ED536E70
210471
ED5BB140
017500
EDB8
ED53B140
3C
2017
310670
21BB41
78

08
3ECY
77
113200
CD831E
08

77
ED5BB140
13
218470
7E

47

23

B6
2018
212640
73

23

72

23
3643
23
3601
23
3600
23
36FF

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
06250
00260
00270
60280
06290
060300
00310
00320
00330
00340
00356
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
(0580
00590
00600
00610
00620
00630
00640
00650

;*****

INTLZE

RSTMEM

NOTDOS
MEMSIZ

STRMEM

GETMEM
SKPCLR

NXTLOC

INITIALTZATION & RELOCATION SEGMENT BEGINS

ORG
ZOR
DEC
LD
POP
PUSH
SBC
JR
LD
LD
DEC
JR
LD
LD
LD
LD
LD
LD
LD
LD
LDDR
LD
INC
JR
LD
LD
LD
EX
LD
LD
LD
CALL
EX
LD
LD
INC
LD
LD
LD
INC
OR
JR
LD
LD
INC
LD
IHC
LD
INC
LD
ING
LD
INC
LD

7000H

A

A

DE,402DH

HL

HL

HL,DE

HZ ,NOTDOS
HL.,4049H

A, {54H)

A

Z ,RSTMEM
HL,4411H
(MEMSIZ+2},HL
(STRMEM+2) ,HL
(GETMEM+2) ,HL
(IEXIT+1),DE
HL,END

DE, (40B1H)

BC, END-OFFSET+1

(40B1H),DE
A

NZ ,SKPCLR
SP, INTLZE+6
HL,41BBH
A, (HL)

AF AF'
A,0C9H
(HL) ,A

DE, 32H
1E83H

AF AF!
(HL),A

DE, (40B1H)
DE

HL, TABLE
A, (L)

B,A

HL

(HL)

NZ ,REPLCE
HL,4026H
{HL),E

HL

(HL),D

HL
(HL),43H
HL

(HL), 1

(HL) ,0FFH

Page 101

Appendix V

EEE + 24

;Clear Carry flag

:Set A to OFFH

;RET address if DOS

:Get actual RET address
:Re~gave 1t as well
:Result zero 1if under DOS
;If not under DOS

;Mod I DOS top-of-memory
:Get byte from ROM
:Determine if Mod 1 or 3
;Go if Model I DOS

;Mod 3 DOS top~of-memory
:Self-modify program

; memory pointers & put
: DOS addr in exit of

s dnitialization voutine
;End of unrelocated pgrm
;End of unprotected mem
;Length of main program
;Move the program

;Save new memory size

:A=0 1if under BASIC

:Skip CLEAR 1if under DOS
:Don't crash moved code
;HL=1st byte DOS vector
:Save DOS vector in

; alternate A register
;Plug DOS vector with

: a RET dnstruction

; "CLEAR 507

:& reset other pointers
:Get original DOS vector
:Restore original vector
iGet new prgrvm location
;DE=Start relocated prgrm
;Get start of reloc table
:Get first address byvte
:Save first byte in B
;Point @ Znd address byte
:Do both bytes egual 07
:No — replace address
sPrinter Device Cntrl Blk
sPut in LSB of pgm START
:Point to next DCB loctn
;Put in MSB of pgm START
;Point to next DCB loctmn
:8et lines/page

:Point to next DCB loctn
;Set current line counter
;Point to next DCB loctn
:Set curvent char counter
:Point to next DCB loctn
:Set char/line (no max)

TRS-80 ROM Routines Documented

706A 011814
706D C3AE19

7070 E5
7071 66
7072 68
7073 19
7074 4E
7075 23
7076 46
7077 2B
7078 D5
7079 EB
707A 09
707B EB
707C 73
707D 23
7JO7E 72
707F DI
7080 El
7081 23
7082 18CE

7084 0DOO
7086 2900
7088 5000
708A 5500

708C 5800
708E 0000

7090

7090 79

7091 FEOC
7093 2013
7095

7098 47

709C CD6400

709F 3E0A
70A1
70A4 10F6
70A6 1820
70A8 FEOQA
70AA 280C
70AC FEOD
70AE 2024

70B0 DD7EOQS5

70B3 B7
70B4 2002
70B6 OECA

DD7E03
7098 DD9604

32E837

00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
008060
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210

IEXIT
REPLCE

;*****

LD
JP
PUSH
LD
LD
ADD
LD
INC
LD
DEC
PUSH
EX
ADD
EX
LD
INC
LD
POP
POP
INC
JR

RELOCATION TABLE

BC, 1A18H
19AEH
HL

H, (HL)
L,B
HL,DE
C, (HL)
HL

B, (HL)
HL

DE
DE,HL
HL,BC
DE, HL
(HL) ,E
HL
(HL),D
DE

HL

HL
NXTLOC

fekkdk

Appendix V

:Best return to BASIC on
: both Models I & IIL
;Save reloc table pointer
:H=MSB of addr from table
;L=LSB of addr from table
;:Get address of label
;Get byte displacement

; from program and

s put in BC

:HL=address of label
;Save new START address

sHL=new

START address

:HL=new address for label
: now put in DE

;:New address calculated =
;s now write it into

; label (address field)
:Restore new START addr
;Restore reloc table pntr
;Bump pointer to nxt addr
sProcess next table entry

;Must be located prior to "START" label of main program!

TABLE

;*****

OFFSET

LPDVR

FFLOOP

NOTFF

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

MAIN PROGRAM (WILL BE RELOCATED) BEGINS

EQU

LD
CpP
JR
LD
SUB
LD
CALL
LD
LD
DJINZ
JR
cp
JR
Ccp
JR
LD
OR
JR
LD

FFLOOP+1~0FFSET
LINEFD+1-OFFSET
RELOI+1-OFFSET
RELO2+1~0OFFSET
SKPCNT+1-OFFSET

0

$

A,C
OCH

NZ ,NOTFF

A, (IX+3)
(1X+4)

B,A
PTRTST-OFFSET
A,0AH
(3788H),A
FFLOOP

RSTCT

OAH

Z,LINEFD

ODH

NZ ,NTSPCL

A, (IX+5)

A

NZ ,LINEFD
C,0AH

Page 102

khkik

;Used by relocator

;Get character to print
;Is it a form feed?

:Go if not form feed
;Get # lines per page
;Subtract lines already
; printed & put in B

;Output
;Repeat

sWait for printer ready
s;Linefeed character in A

it to printer
to top next form

:Reset line & char counts

;1Is

character a linefeed?

:Go if linefeed

sIs
:Go
s1f any
: been
: then
;. else

it a carriage return?
if not special char

characters have
printed on line
print the <CR>,
change to linefd

TRS-80 BOM Routines

70B8
70BB
70BC
70BF
70C2
70C5
70C8
70CC
70CE
70D2
70D4
70D7
70D8
70DA
70DD
70DF
70E2
70E4
70E7
70EA
70EB
70EE
70F1
70F2
70F3
70F4
70F7
7079
70FB
70FC
70FF
7101
7103
7104

7104

7000

CD6400
79
32E837 .
DD3404
DD7EO4
DDBEO3
bpD360500
2023
DD360401
181D
DD7E06
3¢
280D
DDBEOS
3008
CD6400
3EOD
€b2¢00
CD6400
79
32E837
DD3405
AF

79

c9
3AE837
E6F0
FE30
c8
344038
E604
28F1
Fl

c9

,00000 TOTAL ERRORS

. END

INTLZE
NOTDOS
PTRTST
RSTMEM

7104
7000
7024
7O0F4
7017

01220 LINEFD CALL
01230 LD
01240 LNFD2 LD
01250 ING
01260 LD
01270 cP
01280 RSTCT LD
01290 JR
01300 LD
01310 JR
01320 NTSPCL LD
01330 INC
01340 JR
01350 cp
01360 - JR
01370 RELOl CALL
01380 LD
01390 RELO2 CALL
01400 SKPCNT CALL
01410 LD
01420 LD
01430 INC
01440 ENDRT XOR
01450 LD
01460 RET °
01470 PTRTST 1D
01480 AND
01490 cp
01500 RET
01510 LD
01520 AND
01530 JR
01540 POP
01550 RET
01560
01570 END EQU
01580
01590 END
ENDRT 70F1
LINEFD 70B8
NOTFF 7048
RELO!L 70DF
SKPCLR 704E

Documented

FFLOOP
LNFD2
NTSPCL
RELO2
SKPCNT

PTRTST-OFFSET
A,C

(37E8H) ,A
(IX+4)

A, (IX+4)
(IX+3)
(1%X+5),0

NZ ,ENDRT
(1x+4),1
ENDRT

A, (IX+6)

A

Z,SKPCNT
(I1X+5)

NC, SKPCNT
PTRTST-OFFSET
A,ODPH
LNFD2-OFFSET
PTRTST-OFFSET
A,C

(37E8H) ,A
(IX+5)

A

A,C

A, (37E8H)
OFOH

30H

7

A, (3840H)
04H
Z,PTRTST
AF

$-1

INTLZE

709¢C
70BC
70D4
70E4
7087

Page 103

;Wait for printer ready
;Get character to print

Appendizx ¥

;Output it to printer
sIncrement line count
;Get line count in A

sMax line count reached?

;:Reset char count to 0

;If not vet max line cnt

;Reset line count
:Go to routine end
;Get max char per line

;If max char byte =
;s skip char count test

255

;If # chars already prntd
; <maximum don't do <CR>

;Wait for printer ready

;Carriage return in A
;Outpt char, reset counts

;Wait for printer ready
;Get character to print

sOutput it to printer
;Increment char count
;:Set Z flag

;Character restored to A

;Return to calling progrm

;Get printer status addr
:Mask off lowest 4 bits
;Check for printer ready
;Return 1if printer ready
;Check to see if "BREAK™
: key depressed

;If "BREAK” not pressed
;Get rid of RET address

:To calling program

;Used by relocator

GETMEM
LPDVR

NXTLOC
REPLCE
STRMEM

704A
7090
7052
7070
7030

IEXIT
MEMSIZ
OFFSET
RSTCT
TABLE

706D
7027
7090
70C8
7084

TRS-80 ROM Routines Documented - Appendix VI

APPENDIX VI
IMPROVED AMPERSAND FUNCTION

(The following article originally appeared in The Alternate
Source; Volume III, Number 1: Issue 13. It has been revised to
include the decimal-to-hexadecimal conversion routine. It is
reprinted here as an example of accessing a machine language
subroutine through an unused DOS exit, and also to illustrate the use
of ROM routines within a user program.)

In Disk BASIC there is a function called by the "&" character,
which lets you use a hexadecimal or octal constant as part of a BASIC
statement. As written, it seems to me to be a fairly useless
function, except that it is often more convenient for the programmer
to use a hexadecimal address in a PEEK or POKE statement, and this
function allows it. But, if you don't have the function available,
you need only convert the number to decimal first. The "&" function
works with constants only -- you can't use it with variables to
convert them to decimal.

Can we improve upon this situation? Of course we can -- and you
can even use the program with Level II BASIC! The program can also be
patched into Disk BASIC, and will remain completely compatible with
the existing "&" function. For example:

X=§H7FFF (convert hex to decimal, X will equal 32767)
X=&01777 (convert octal to decimal, X will equal 1023)
X=§1777 (octal conversion assumed if not specified)

However, the following additional functions are now made available:
X=&B11011100 (convert binary to decimal, X will equal 220)
X=&H(AS) (convert hex string contained in string variable

A$ to decimal, and store in X. Routine stops at
first non-hex character)

X=&0(AS$) or (same as above except A$ assumed to be octal
X=&(AS) string)

X=&B (AS) (same as above except A$ assumed to be binary)
X=&4PEEK(16548) (two byte peek -- returns integer value of the

two memory locations at and immediately following
the specified location. This particular statement
would be the equivalent of this line of BASIC:)
X=PEEK(16548)+PEEK(16549)*256

X$=§FN(32767) (decimal to hex conversion --- returns a four-byte
long STRING containing the hexadecimal equivalent
of the specified integer expression. X$ will

equal "7FFF" in this example)

Page 104

TRS—-80 ROM Routines Documented Appendix VI

Note that the ability to convert a string containing a hex, octal or
binary number is probably the most useful part of this routine. You
may think of this as a VAL function for strings in another base. As
an example of the power of this routine, let's consider a short
program that asks the user for an address in hexadecimal, then prints
the contents of the two-byte pointer at that address:

10 INPUT "ADDRESS IN HEX"; A$
20 PRINT &PEEK(&H(AS))

That's the whole program! Note that the number returned by the "&"
function must be an integer in the range -32768 to 32767 (the same as
the Level II PEEK and POKE functions). Should you require an absolute
decimal number, use a statement similar to this:

X=&HB000 : X=X-(X<0)*65536 (X will equal 32768)

Also note that "&" functions can be nested if necessary. For example,
suppose you wanted the above two-byte pointer returned in hexadecimal
format. You could change line 20 as follows:

20 PRINT &FN(&PEEK(&H(AS)))

During base conversions (except for integer decimal to
hexadecimal), any valid string expression may be used within the
parenthesis. Any of the following might be used:

&H("TFFF") &H(Z2S$(0)) EB{"1111"+XS).

Now let's track down an apparent bug. Try entering these two
statements from the kevboard:

?&H{"1DEF")
?&HIDEF

You SHOULD get the same result - but the second statement bombs!
(Disk BASIC users, don't laugh until you try the second statement on
your system). The reason for this is that when DEF is seen by the
BASIC interpreter as part of a command line, it is changed to the
token for the DEF function, so the characters DEF are not there for
the "&" function to decode. However, if the characters are part of a
literal string or string variable, they are not encoded by BASIC, so
the function works. The easiest way to avoid this problem in a BASIC
program is, if you are using a hex constant with the characters DEF,
place a space between the D and E or between the E and F. This breaks
up the reserved word, and BASIC will not encode it. Try entering:

?&H1D EF

It works. Remember, this problem only affects hex constants -- it
does not affect string variables enclosed within parentheses.

When using the integer to hexadecimal function, keep in mind that
if the result is to be assigned to a variable, it must be a STRING
variable, and also that the expression within the parenthesis must
evaluate to an integer expression. This is in contrast to the other

Page 105

TRS-80 ROM Routines Documented Appendix VI

"&® functions, all of which return an integer as a result, and some of
which accept a string argument.

This routine makes several calls to ROM. One of the not-so-well
documented ones 1is at 252CH. This is the parenthesized expression
evaluator (sounds like a futuristic machine, right?). On entry to
this routine, HL must point to the left parenthesis. The expression
will be evaluated up to the corresponding right parenthesis, and the
result (or pointer to the string vector, if a string expression) will
be stored in the math accumulator, with the number type flag set

appropriately‘ The math accumulator begins at 4121H, except for
double precision numbers -~- in that instance, it begins at 411DH. The
number type flag is located at 40AFH. If you wish to evaluate an

expression that is not in parentheses you may call 2337H; on entry to
this routine, HL must point to the first character of the string to be
evaluated. This time, the expression will be evaluated up to a zero
byte, colon, etc. You may be able to make use of these routines in
your assembly language programs, also.

In order to use this routine you must protect the memory it
resides in by setting the MEMORY SIZE to 32595. If you have assembled
the program to tape, simply load it in using the SYSTEM command. If
you have assembled the program to disk (hopefully you changed the ORG
address in line 170 to something more appropriate for your system), go
into BASIC (don't forget to QEGteCL memory!) and from BASIC READY do a
CMD"filename" where "filename" is the name of the assembled object
code (under TRSDOS use CMD"I","filename"). This will (should) get the
program into high memory and patched into BASIC. The program listing
follows:

00100 ; LINK TO & FUNCTION VECTOR
00116
4194 00120 ORG 4194H s VECTOR FROM "&" FUNCTION
4194 C3537F 00130 Jp START ;JJUMP TO START OF ROUTINE
00140
00150 ; MAIN PROGRAM BEGINS HERE
00160
TF53 00170 ORG TF53H cMAIN PRGM~-MAY RELOCATE
7F53 D7 00180 sTART RST 10H ;GET NEXT CHARACTER
7F54 CB7F 060190 BIT 7. A ; CHECK FOR TOKEN
7F56 2844 006200 JR Z , NOTTKN GO IF NOT BASIC TOKEN
7F58 F5 00210 PUSH AF ;s SAVE TOKEN
7F59 D7 00220 RST 108 ;GET NEXT CHARACTER
7F5A CD2C25 00230 CALL 252CH ; EVALUATE EXPRESSION
7F5D E3 00240 EX {(SP) ,HL s SAVE BASIC POINTER
7F5E E5 00250 PUSH HL ;s RE~SAVE TOKEN
7F5F CD7F0A 00260 CALL 0ATFH sCHANGE TO INTEGER
7F62 F1 00270 POP AF ;GET TOKEN
7F63 FEE5 00280 Ccp 0E5H ;2-BYTE PEEK?
7F65 2009 00290 JR NZ,NOTPK s IF NOT 2-BYTE PEEK
7F67 5E 00300 LD E, (HL) :GET CONTENTS OF ADDRESS
7F68 23 40310 INC HL ; POINTED TC BY HL AND
7F69 56 00320 LD D, (HL) ; PUT IN DE REGISTERS
7F6A ED532141 00330 LD (4121H),DE ; AND MATH BUFFER

Page 106

TRS-80 ROM Routines Documented

TF6E
7F6F
7F70
TF72
TF75
7F76
7F79
7F7C
7F7D
7F80
TF83
7F84
7E87
7F88
TF89
TFBA
7F8B
7EF8C
7F8D
7F30
7F91
7F93
7F95
7F96
7F98
7FS99
7F9A
7F9B
7F9C
7F9F
7Fal
TEA3
TEAG
7FAB
7FAA
7FAD
7FAF
7FB1
7FB2
7FB3
7FBS
7FB7
7FB8
7FBB
7FBC
7FBD
7FCO
7FCl
TFC2
7FC3
T7FC4
7FC5
TFC6
7FC7
TFCH
7FCS

El

CS
FEBE
C29719
EB
CD807F
CD9310
C5
C33928
213041
74
CD887F
7B

F5

OF

oF

OF

OF
CDY17F
Fl
E60F
C690
27
CE40
27

77

23

c9
010201
FE42
280F
011004
FE48
2808
010803
FE4F
2801
2B

D7
FE28
2018
C5
CDh2C25
E3

E5
cp072aAa
Cl

5F

23

7E

23

66

6F

EB

19

EB

00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890

NOTPK

CONV

COonv2

CONV3

NOTTKN

CONT

POP
RET
Cp
JP
EX
CALL
CALL
PUSH
JP
b
LD
CALL
LD
PUSH
RRCA
RRCA
RRCA
RRCA
CALL
PGP
AND
ADD
DAA
ADC
DAA
LD
INC
RET
LD
cp
JR
LD
Cp
JR
LD
CP
JR
DEC
RST
CcP
JR
PUSH
CALL
EX
PUSH
CALL
POP
LD
INC
LD
INC
LD
LD
EX
ADD
EX

HL

0BEH
NZ,1997H
DE,HL
CONV
1093H

BC

2839H
HL,4130H
A,D
CONV2

A E

AF

CONV3
AF
OFH
A,90H

A,40H

(HL) ,A
HL

BC,102H
FBI

Z ,CONT
BC,410H
!Hl

% ,CONT
BC,308H
VOi

Z , CONT
HL

10H

!(l

NZ ,NOTEXP
BC
252CH
(S5P) ,HL
HL
2A07H
BC

E,A

HL

A, (HL)
HL

H, (HL)
L,A

DE, HL
HL,DE
DE, HL

Page 107

Appendix VI

sRESTORE BASIC POINTER
;NUMBER IN BUFFER & DE
sCHECK FOR HEX CONVERSION
;SN ERROR IF NOT HEX CONV
;PUT VALUE IN DE

; CONVERT TO STRING

s MARK END OF STRING

;FOR ROM TO DISCARD
;RETURN THRU STRS$ ROUTINE
;ASCII CONV. WORKSPACE
;:CONVERT D REGISTER

; TO ASCII (HEX)
;CONVERT E REGISTER

:SAVE BYTE TO CONVERT
;ROTATE HIGH NYBBLE

; DOWN TO LOWER

s FOUR BITS

;CONVERT TO ASCI I (HEX)
sRESTORE BYTE TO CONV
;USE LOWER FOUR BITS ONLY
s THIS ROUTINE CONVERTS
HEX VALUE IN RANGE
00H-0FH TO ASCII CHAR
0-9 OR A-F

; STORE RESULT ASCII CHAR
;s BUMP WORKSPACE POINTER

; (THIS ROUTINE RECURSIVE)
;SET UP BINARY PARAMETERS
;IS IT BINARY?

:GO IF BINARY

; SET UP HEX PARAMETERS
;15 1T HEXADECIMAL?

;GO IF HEXADECIMAL

; SET UP OCTAL PARAMETERS
IS5 IT OCTAL?

;GO IF OCTAL

s OCTAL ASSUMED

;GET NEXT CHARACTER

:I5 CHARACTER A " ("?

;GO IF NOT A " (*®

sSAVE COUNTER & MAX DIGIT
;EVALUATE EXPRESSION
;SAVE BASIC BYTE POINTER
sRE-SAVE CNTR & MAX DIGIT
;CLEAN UP WORKSPACE
sRESTORE CNTR & MAX DIGIT
;GET STRING LENGTH IN E

s GET ADDRESS OF FIRST
CHARACTER OF STRING
AND STORE IN HL
REGISTERS

¢ Tme e wp

e we Wy

:HL=STRING LNGTH, DE=STRT
s HL=STRING END + 1

;HL=START, DE=END + 1

TRS~-80 ROM Routines Documented

7FCA
7FCD
7FCE
7FCF
7FD2
7FD3
7FD4
7ED7
7FDA
7FDB
7FDD
7FDE
7FDF
7FEQ
7FEl
7FE2
7FE4
7FE6
7FE7
7FES
7FEB
7FEC
TFED
7FEF
7FF0
7FF1
7FF2
7FF5
TFE7
TFF8
7FF9
TFFC
7FFD
7FFE

06ccC

CDD27F
El

Cc9
11FFFF
2B

E5
210000
CDSAOA
E3
DDEl
D7

08

DF

c8

08
3805
FE41
D8
D607
D630
B9

DO
DDES
E3

C5

29
DAB207
10FA
4F

09
222141
Cl

E3
18DB

00900
00910
00920

00930 NOTEXP

00940
00950
00960
00970
00980

00990 NXTDGT

01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
0l11lo0
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260

00000 TOTAL ERRORS

CONT 7FB2
CONV3 7F91
NOTTKN 7F9C

CONT2

DIGIT

TIMES2

CONT2
DIGIT

NXTDGT

CALL
POP
RET
LD
DEC
PUSH
LD
CALL
EX
pPOP
RST
EX
RST
RET
EX
JR
CP
RET
SUB
SUB
CP
RET
PUSH
EX
PUSH
ADD
JP
DJINZ
LD
ADD
LD
POP
EX
JR

END

7FD2
7FE9
7FDB

Page

CONT2
HL

DE,OFFFFH
HL

HL

HL,0
OA9AH
(SP) ,HL
IX

10H
AF,AF'
188

Z
AF,AF?
C,DIGIT
41H

C

7

30H

cC

NC

IX

(SP) ,HL
BC

HL, HL
C,7B2H
TIMES2
C,A
HL,BC
(4121H) ,HL
BC

(SP) ,HL
NXTDGT

06CCH

CONV
NOTEXP
START

108

Appendix VI

sEVAL. STRING EXPRESSION
sRESTORE BASIC POINTER
;NUMBER IN MATH BUFFER
;CHECK TO NONHEX CHAR.
;BACK UP BASIC POINTER
;SAVE BASIC POINTER

; ZERO MATH ACCUMULATOR

s & SET TYPE FLG TO INT.
:HL=BASIC POINTER, (SP)=0
;STORE # SO FAR IN IX
:GET NEXT CHAR. (DIGIT)

;s SAVE CHARACTER & FLAGS
;CHECK FOR END OF STRING
sRETURN IF END OF STRING
sRESTORE CHAR. & FLAGS
;IF CHAR. IN RANGE 0 TO 9
;IS CHAR BELOW ASCII "A"?
;END OF NUMBER IF < "A"
;OFFSET FOR ALPHA CHARS.
;A=0 TO 15 FOR 0-9 OR A-F
;C=2, 8, OR 10H MAX DIGIT
;END OF NUMBER IF >= MAX.
;PUT # SO FAR ON STACK
;HL=# SO FAR, (SP)=PNTR

s SAVE COUNTER & MAX DIGIT
s MULTIPLY HL TIMES 2

s ERROR IF OVERFLOW >FFFFH
;REPEAT MULTIPLY ‘TIL B=0
;ADD VALUE OF LATEST

: DIGIT FETCHED TO HL
;CURRENT HL TO BUFFER
;RESTORE CNTR & MAX DIGIT
;HL=BASIC PNTR, (SP)=#
;GET NEXT DIGIT (IF ANY)

;USE 1A19H FOR MODEL III
; OR 402DH FOR DOS

7F80 CONV2 7F88
7FCF NOTPK 7F70
7F53 TIMES2 7FFl

TRS-80 ROM Routines Documented Appendix VII

APPENDIX VII

LINE INPUT ROUTINES FOR LEVEL II BASIC
(or, making BASIC behave the way you'd like it to)

(At the time of writing this book, this article had been accepted
for publication by The Alternate Source Programmer's Journal, which
unfortunately ceased publication before the article was printed. It
is printed here to demonstrate interfacing a machine language routine
with BASIC, and the use of ROM routines in a user program).

The ideal situation is that all computer programs be
user-oriented (translation: dunce-proof). Unfortunately, in oxrder to
achieve that ideal you might spend quite a bit of time trying to
figure out every possible way that Sam Scatterbrain can make the
program bomb (through lack of knowledge about how the program works,
deliberate attempt, or otherwise). The biggest need for bomb-proofed
programs is in business applications - you can always reload and
restart a game program without any loss (other than in time and
frustration), but if you can bomb a business program you may manage to
foul up a data base that is going to cost someone quite a bit of time
and/or money to fix or replace. The problem is usually compounded by
the fact that the operators of business programs are often secretaries
who barely understand the difference between a computer and an adding
machine, and who tend to prove Murphy's Law whenever confronted with
the unexpected -- that is to say, whenever the computer does something
strange, the secretary will attempt to correct the condition by doing
the one thing that will cause a major disaster ("None of the buttons
on the keyboard seem to work, maybe if I try this button they have
hidden in the back corner...").

The problem in making user-oriented programs is that BASIC won't
always cooperate. One of the best examples of this 1is the INPUT
command . Use of the INPUT command is almost an open invitation to
disaster, especially if vyour application requires that a nice,
formatted video display be maintained. Assuming you have had the
foresight to disable the BREAK key, there are still several easy ways
to accidently garble or destroy the current screen contents:

1. Hit the CLEAR key.

2. Hit the DOWN ARROW (linefeed) key.

3. Hit the SHIFT and RIGHT ARROW key together (32 character mode).
4, Enter a comma or colon as part of input ("EXTRA IGNORED" message).
5. Type an overlength line.

I'm sure there are other ways also, but these five are sufficient to
cause terminal frustration.

Try to correct the situation using the INKEY$ function, and
listen to the touch typists complain - "It doesn't keep up with my
typingt" Is there a better way? If you have Disk BASIC, you can use
the LINE INPUT command. If vou don't have disk, vou can buy Lewvel III
BASIC (and use up a good portion of your available memoryl}. Or, you
can use one of the two programs shown below.

Pace 10U

TRS-80 ROM Routines Documented Appendix VII

Why two programs? The difference is that the first uses much
less memory, while the second is more versatile. Both implement the
LINE INPUT command in Level II BASIC. You should also be able to use
these with a disk-based system, but they would disable the LINE INPUT
command already in Disk BASIC. Don't go away, disk users, these
programs make use of some ROM routines that you might find useful
during your next attempts at assembly language programming.

Using the first (shorter) program, the LINE INPUT statement can
be wused exactly 1like the regular INPUT statement, with three
differences:

1. The input variable must be a string variable or a Type
Mismatch (TM) error will occur.

2. The ? (question mark) prompt is not automatically supplied.
If a prompt string is used, user input begins immediately at the end
of the prompt string. If the question mark and/or a trailing space
are desired, they can be inserted at the end of the prompt string.

3. Any commas, colons, or quotation marks which are typed in by
the user are accepted as part of the input string. The ability to
input commas is probably the handiest feature of the LINE INPUT
command, at least insofar as the end user is concerned.

Acceptable formats for the line input statement include:

LINEINPUT A$
LINEINPUT "Enter _ity and State: "; AS

Using the second (longer) program, all of the features of the
first program are present. In addition, the following additional
features may be optionally implemented by placing an exclamation mark
(') just before the variable name:

1. All control keys are ignored except ENTER, LEFT ARROW
(backspace), and SHIFT LEFT ARROW (backspace to start of input). This
makes it impossible to accidently clear the screen or to drop down a
line on the video display because you inadvertently hit the down-arrow
(linefeed) key.

2. When ENTER is pressed at the end of input, it is NOT echoed
to the screen. Thus, it is possible to have several inputs on the
same line on the screen if desired. When a linefeed is needed, simply
execute a PRINT statement immediately following the LINE INPUT
statement.

Another feature of the second program is that it is permissible
to insert an argument which defines the maximum input length. If the
user attempts to type beyond that maximum, the additional input is
ignored. The argument may specify a maximum length of zero to 240
characters (if zero is specified, only the ENTER or BREAK keys will be
recognized, while 240 characters is the normal maximum for the INPUT
statement and is the default if an argument is not specified). If the
argument is used, it may be an expression (such as 2*A+2). This
feature can be used to prevent the user from typing in an overlength
line that would otherwise overflow a data field or spoil the video

display.

Page 110

TRS~80 ROM Routines Documented Appendix VII

Acceptable formats for the line input statement using this second
program include:

LINEINPUT AS

LINEINPUT! AS$

LINEINPUT "Enter City and State: °
LINEINPUT "Enter City and State: °©
LINEINPUT $20,A8

LINEINPUT #20,1AS

LINEINPUT #20,"Enter City and State: e AS
LINEINPUT #20,"Enter City and State: ";IAS
A=2:B=5:LINEINPUT #A%*B*2,1AS

Note that the last five statements would all limit the user input to
20 characters. The argument must be preceded by a # (number sign) and
followed by a comma, and must be placed before the prompt string if
one is used.

If you want to give your secretary (or whomever) some indication
of how many characters s/he may type in response to an input regquest,
try this:

10 PRINT@518,STRINGS$(25,95);:PRINT@512,; :LINEINPUTH 25, "Name: " ;AS$

Assuming that you have the second LINE INPUT routine in place, try

entering this BASIC program segment into your computer and RUN it - it
may get vyou to thinking about ways to make your prompts more
effective. Be especially careful of the punctuation - note that a

semicolon must follow the STRINGS statement and that both a comma and
a semicolon (as well as a colon to separate the statements) follows
the second PRINTE. Also note that a space is the last character of
the prompt string (this makes the prompt and the user response more
readable).

HOW THE PROGRAM WORKS

Let's take a look at the first (short) program. It begins by
initializing the wvector from the LINE command in BASIC at 41A3H to
jump to the start of the line input program whenever BASIC sees the
LINE command. At the beginning of the program, we must first check to
make sure that the token for "INPUT" follows the LINE command. The
method by which we do this is to execute an RST 8. Note that the byte
immediately following the RST 8 is defined as 89 hexadecimal. This is
the token for the reserved word INPUT. To understand how this works,
you should first know that the HL register pair normally points to the
next byte to be executed in a BASIC program. In other words, when
BASIC calls the LINE routine HL 1is already pointing to the INPUT
statement, assuming that the syntax is correct. This is true even if
there were spaces between the LINE and INPUT commands.

RST 8 is a "shortcut” for calling a frequently used subroutine.
In this case, the actual location of the subroutine is at 1C96H, so
RST 8 is the same as CALL 1C96H in the TRS-80, except that we save two
bytes by calling RST 8. When we call the subroutine, the return
address (the next byte of our program, which is DEFB 89H) is pushed

Page 111

TRS-80 ROM Routines Documented Appendix VII

onto the stack. The subroutine gets this location from the stack, and
compares the byte stored there with the byte stored at the location
pointed to by HL (the next statement in our BASIC program). The
return address 1is then incremented once (to skip the 89H byte and
point to the next "real" 2-80 instruction) and is then placed back on
the stack. If the compared bytes were the same (meaning that we have
a valid LINE INPUT statement) a jump is taken to 1D78H, which is the
location of the routine called by RST 10H (we'll get back to this
one). If they are not the same (something other than INPUT followed
the LINE statement), a jump is made to 1997H - the location of the
syntax error routine (SN ERROR).

For those who would like to follow the operation of this routine,
here is an assembly language listing:

1Cc96 7E LD A, (HL) ;HI=BASIC program pointer
1C97 E3 EX (SP) ,HL :Return address in HL
1C98 BE CP (HL) ;Compare bytes

1C99 23 INC HL ;Increment return address
1C9%a E3 EX {SP) ,HL :Put return address back
1C9B CA781D Jp Z,1D78H :I1f compared bytes same
1C9E C39719 Jp 1997H ;Syntax error if not same

The routine at 1D78H is normally called by executing an RST 10
instruction. However, since we are already in a subroutine, it is
easier just to jump to the next subroutine. The subroutine at 1D78H
increments HL (our BASIC program pointer) so that it points to the
next character of our BASIC program (skipping any spaces or linefeeds
along the way). At the end of this subroutine, HL will point to the
next character following the INPUT token that 1isn't a space or
linefeed. If the character is numeric (it shouldn't be in this case)
the carry flag will be set. If the character is a colon or zero byte
(end of BASIC statement) the zero flag will be set (this shouldn't
happen now, either). In any event, the character pointed to by HL
will be stored in the A register upon return.

In other words, if our statement was:

LINE INPUT QS
upon return from the routine at 1D78H, the HL register pair will point
to the character "Q" (of "Q$"), the A register will contain 51H (ASCII

code for "Q"), and neither the carry or zero flags will be set.

This is the code for the subroutine at 1D78H:

1p78 23 INC HL :Bump BASIC program pntr
1Dp79 7E LD A, (HL) :Get char at pointer loc
1D7A FE3A CP 32H ;:Return (no flags set) if
1D7C DO RET NC ¢ char greater than "9"
1D7D FE20 CcpP 20H :If char is space, bump
1D7F CA781D JP Zz,1D78H ; ptr again (start over)
1D82 FEOB Cp 0BH ;Skip next test if char
1D84 3005 JR NC,1D8BH ;s greater than linefed
1D86 FEO9 cp 098 :If chr is linefeed, bump
1p88 D2781D Jp NC,1D78H ; ptr again (start over)

Page 112

TRS—-80 ROM Routines Documented Appendix VII

1D8B FE30 ce 30H ;Set C flag if below "07
1D8D 3F CCF ;Complement C (set if 0-9)
1D8E 3C INC A ;If character zero bvte
1D8F 3D DEC A ; this sets Z flag

1D90 C9 RET sReturn to sendery

Anyone examining this bit of code might conclude that Microsoft
had some space to kill, since two bytes could have been saved by
substituting relative jump (JR) instructions in place of the absolute
jump (JP) instructions. However, this is probably the most fregquently
called subroutine in the entire ROM, so it stands to reason that this
routine would be optimzed for speed of execution, not for conservation
of space.

Back to the program at hand. Our line input program next calls
2828H to check for an Illegal Direct (ID) error. The reason for this
is that the direct mode of BASIC uses the input buffer for storage of
the BASIC statements being executed, so it cannot simultaneocusly be
used to hold the user response from an INPUT statement.

The program next makes a call to 21CDH, in the middle of a
routine used by BASIC's INPUT routine, to display the prompt string
(if one is used). Because the routine 1is not entered at the
beginning, we must first load the A register with the contents of the
location pointed to by HL (our BASIC pointer) prior to making the
call.

The rest of the calls into ROM are fairly straightforward (in
this program, anyway). Here's a short description of what happens at
each of them:

0361H actually gets our input from the kevboard and puts it into
the input buffer. The location of the buffer is specified by a
pointer located at 40A7H-40A8H. A zero byte is placed in the buffer
at the end of the input, and HL points to the starting address of the
buffer minus one on exit from the routine.

IDBEH is where the program jumps if BREAK was typed to end the
input. This routine sets up the necessaryv pointers for the CONTinue
command before going back to BASIC "READY".

260DH 1is the routine that finds (or creates) a variable in
memory . On entry, HL must point to the first character of the
variable name. After return from this routine, HL will point to the
next character following the wvariable, DE will contain the address of
the variable in memory, and the number type flag at 40AFH will be set
according to the type of wvariable (in this case it should contain a
value of 3 to indicate a string).

0AF4H checks the Number Type Flag to see if it does in fact
contain a wvalue of 3. If it does not (the variable name did not
indicate a string variable), a Type Mismatch error will be generated.

2868H creates a string VARPTR for the contents of the input
buffer, so that BASIC can properly process the input as a string. The

Page 113

TRS-80 ROM Routines Documented Appendix VII

two byte VARPTR will be stored at 4121H-4122H on return from this
routine.

1F32H is part of the LET command routine. This routine assigns
the string to the variable name and moves it up to the string storage
area in high memory.

The second (longer) program uses some additional routines of
interest. It starts out the same as the first program, but then loads
the E register with a default maximum line length in the event that
the user hasn't specified one. It then checks for the "#" character,
indicating a user specified line 1length. Disk BASIC uses the "#"
character to indicate that a line is to be input from a disk data
file, so if you are attemping to patch this routine into Disk BASIC
you will want to choose some other character to indicate the user
specified line length in order to maintain compatibility with existing
Disk BASIC programs.

If the "#" character 1is not found, the next portion of the
program is skipped. Otherwise, the argument following the "§"
- character must be evaluated. Here's how that evaluation is
accomplished: First a RST 10H instruction is executed, which (as
explained later) gets the next wvalid character. Then the routine at
1E46H 1is called. This routine evaluates the expression beginning at
the address pointed to by HL and returns the result in the DE register
pair. An error message will be generated if the expression does not
evaluate to a number between zero and 32767 decimal. BASIC uses this
routine to evaluate the argument for the CLEAR command.

While we're on the subject, it may be worth mentioning that the
routine at 1E46H is part of a group of related routines that work
almost the same way. The routine at 2B02H operates in exactly the
same manner except that the expression may be in the range -32768 to
+32767 (used by PEEK and POKE). And the routine at 1E5AH won't accept
an expression, just a string of digits (such as a line number) which
must be in the range from zero to 65529. All of these routines return
their result in DE (or zero if no expression or string of digits is
present).

Once the expression is evaluated, it must be checked to make sure
it's within limits. If it's not, we ship off to 1E4AH, the function
call (FC) ervor routine. Otherwise, an RST 8 instruction is used to
make sure that the comma follows the argument as it should (the comma
is needed to separate the argument from the input variable name, so
that BASIC doesn't get confused).

At this point, the E register contains the maximum line length.
This will be needed later, so for now it will be saved on the stack.
The next step is to check for an Illegal Direct (ID) error, and to
display the prompt string (if any). Then a check is made look to see
if the special "!" character has been included just prior to the
variable name. The %2 flag gives the result of that test, but for now
the only special action taken is to bump HL up to point to the first
character of the variable name if it isn't there already. Now the
maximum line length is fetched from the stack and placed into both the
B and C registers (B keeps a running count while C continues to hold

Page 114

TRS-80 ROM Routines Documented Appendix VII

the maximum line length). Finally, it's time to save the BASIC
pointer on the stack. Remember that the 2 flag is still set if the
"i" character was found - otherwise it is reset.

Now comes an interesting section. 1In the first program, we made
a CALL to 036lH to get the user input, but that doesn't give us the
control that we require in this program. So, in order to make things
work the way we want them to, a portion of the ROM must be re-written.
In order to save memory, the program will be jumping intoc the ROM
later, but at a point where BASIC expects certain things to be on the
stack. So we take this opportunity to load the stack the way that
BASIC will expect it to be set up. First we place the return address
to our program onto the stack, followed by the BC register pair (it's
not needed, but BASIC expects something to be there). Next onto the
stack is the return address for the part of ROM that the routine would
have been called from if our program hadn't come in through the
window, so to speak. Finally, HL is loaded with the address of the
beginning of the input buffer. If the Z flag was not set (no "i©
character found), the program can jump into the ROM now, otherwise the
HL register pair must also be PUSHed onto the stack. Now the stack is
set up properly.

Assuming that the "!" was present, we must continue to bypass the
ROM for a while. So, our program loads the A register with OEH and
CALLs 33H. 33H prints the character stored in the A register on the
video display, unless that character is a control character, in which
case it performs the proper control code functions. Since 0EH is the
control code for "turn on the cursor®”, that is just what the routine
does.

After loading the B register with the maximum line length (B
keeps a running count, while C continues to hold the maximum), a CALL
is made to 49H. This is the famous "get a keystroke" routine - it
waits until a key is depressed (pick a key, any kev...) and then
returns with whatever character was input stored in the A register.
Various tests must now be run on the character to determine what
should be done with it, if anything. WNote that if a control character
was typed, the program drops to a routine that deals with control
characters. If the control character is one that is allowed to be
input by the user, a jump is taken to the portion of ROM that handles
that character, always making sure the proper return address is stored
on the stack. In the case of the ENTER key, them jump is taken into
the middle of the routine, since we don't want to output the carriage
return to the video display (the character that turns off the cursor
must still be output, however). Since the ROM expects AF to be pushed
onto the stack at this point, our program must make sure that AF is
indeed on the stack if it is going to take the plunge into the ENTER
key routine. Using the ROM would be much simpler if we didn't have to
take care that the stack is always adjusted correctly (but then, so
would programming in general, come to think of it)!

Despite the problems, yvou can see that making full use of the
ROMs results in programs that can do more while using less memory, and
that (usually) much less effort is required of the programmer than if
the stored code is not used. One thing that you will need in order to
make the fullest use of the ROM routines is a disassembled listing of

Page 115

TRS~-80 ROM Routines Documented Appendix VII

the ROMs.
program such as

If you have a disassembler (or a disassembling monitor
TASMON) and a printer, you can make your own
disassembled listing (be sure that you're not low on paper when you
start the printout, however)! There are a few books currently
available that contain disassembled listings of the ROM, and in my
opinion the best of these (at the time of this writing) is still MOD
ITT ROM COMMENTED by Soft Sector Marketing. Although it covers the
Model III only, the book contains a commented disassembly of almost
the entire Model III ROM, with relevant comments for almost every
instruction. Since most of the Model I ROM contains the same code as
the Model III ROM, Model I users would also find this book very
useful. It's presently out of print, but you may still be able to
find a copy in your neighborhood computer store.

In closing, I would 1like to acknowledge that some of the
information necessary to make the above routines work properly was
obtained from a column authored by Mr. Larry Rosen, which appeared in
the June, 1980 issue of the Chicatrug (Chicago TRS-80 Users Group)
News. Thanks are in order to Mr. Rosen and to others like him who
have helped to unravel the mysteries of the TRS-80 ROM routines.

The program listing for the SHORT line input command routine

follows:

00100 LINK TO LINE COMMAND VECTOR

00110
41A3 00120 ORG 41A3H :VECTOR FROM *LINE"®
41A3 C3DAT7F 00130 JP LINE

00140

00150 MAIN PROGRAM BEGINS HERE

00160 IF ORG ADDRESS NOT CHANGED

00170 : USE MEMORY SIZE = 32729

00180
7TFDA 00190 ORG 7FDAH :MAY BE RELOCATED
7FDA CF 00200 LINE RST 8 :"INPUT" MUST FOLLOW
7FDB 89 00210 DEFB 89H H "LINE" -~ ELSE SN ERROR
7FDC CD2828 00220 CALL 2828H :CHECK FOR ID ERROR
7FDF 7E 00230 LD A, (HL) :GET NEXT CHARACTER
7FEQ0 CDCD21 00240 CALL 21CDH :DISPLAY PROMPT IF ANY
7FE3 E5 002590 PUSH HL :SAVE BASIC POINTER
7FE4 CD6103 00260 CALL 0361H :GET KEYBOARD INPUT
T7FE7 Cl 006270 POP BC :BC=BASIC POINTER
7FE8 DABEl1D 00280 JP C,1DBEH : IF "BREAK" WAS PRESSED
7FEB C5 00290 PUSH BC :SAVE BASIC POINTER
7FEC E3 00300 EX (SP) ,HL :SAVE INPUT PTR-GET BASIC
7FED CDOD26 00310 CALL 260DH :FIND OR CREATE VARIABLE
7FF0 CDF40A 00320 CALL OAF4H :TM ERROR IF NOT STRING
7FF3 EB 00330 EX DE, HL :SWITCH BASIC & ADR PTRS
7FF4 E3 00340 EX (SP) ,HL :SWITCH INP, VAR ADR PTRS
7FF5 D5 00350 PUSH DE :SAVE BASIC POINTER
7FF6 0600 00360 LD B,0 : TERMINATING BYTE=0
7FF8 CD6828 00370 CALL 2868H :CREATE STRING
7FFB El 00380 POP HL :RESTORE BASIC POINTER
TEFFC AF 00390 XOR A : ZERO ACCUMULATOR

Page 116

TR5~80 ROM Routines Documented
TFFD C3321F 00400 Jp
0s8CC 00410 END
00000 TOTAL ERRORS

LINE 7FDA

The program listing for
follows:

1F32H
06CCH

the LONG line

Appendix VII

: JUMP TO ROM
sMODEL III USE 1A19H

input command routine

00100 ; LINK TO LINE COMMAND VECTOR
00110
4143 00120 ORG 41A3H ;VECTOR FROM "LINE"
41A3 C3767F 00130 Jp LINE
00140 |
00150 ; MAIN PROGRAM BEGINS HERE
00160 ; IF ORG ADDRESS NOT CHANGED
00170 ; USE MEMORY SIZE = 32629
00180 ;
7F76 00190 ORG 7F76H ;MAY BE RELOCATED
7F76 CF 00200 LINE RST 8 ;"INPUT" MUST FOLLOW
7F77 89 00210 DEFB 89H ; "LINE" - ELSE SN ERROR
7F78 1EF0 - 00220 LD E,0F0H ;DEFAULT MAX. LINE LENGTH
7F7A FE23 00230 cp v§ ;CHECK FOR ARGUMENT
7F7C 2012 00240 JR NZ, SVLGTH ;IF NO ARGUMENT
7F7E D7 00250 RST 10H ;POINT HL TO NEXT CHAR
7F7F CD461E 00260 CALL 1E46H ;GET ARGUMENT IN DE
7F82 7A 00270 LD A,D ;CHECK ARGUMENT FOR
7F83 B7 00280 OR A ;s VALUE OVER OFOH
7F84 2005 00290 JR NZ, FCERR ; (FC ERROR IF OVER)
7F86 7B 00300 LD A,E
7F87 FEF1 00310 cp O0FlH
7F89 3803 00320 JR C, ENDCHK ; IF LENGTH IS OK
JF8B C34A1E 00330 FCERR JP 1E4AH ;FC ERROR ROUTINE
7F8E CF 00340 ENDCHK RST 8 ;CHECK FOR END COMMA
7F8F 2C 00350 DEFB o ; (SN ERROR IF NOT)
7F90 D5 00360 SVLGTH PUSH DE ;SAVE MAXIMUM LINE LENGTH
7F91 CD2828 00370 CALL 2828H ;CHECK FOR ID ERROR
7F94 7E 00380 LD A, (HL) ;GET NEXT CHARACTER
7F95 CDCD21 00390 CALL 21CDH ;DISPLAY PROMPT IF ANY
7F98 7E 00400 LD A, (HL) :GET NEXT CHARACTER
7F99 FE21 00410 cp vy ;IS IT "1v7?
7F9B 2003 00420 JR NZ , NOEXP ;DON'T BUMP PNTR IF NOT !
7F9D F5 00430 PUSH AF :SAVE "7" FLAG
7F9E D7 00440 RST 10H ;POINT HL TO NEXT CHAR
7F9F Fl 00450 POP AF ;RESTORE "Z" FLAG
7FA0 C1 00460 NOEXP POP BC ;RESTORE MAX LINE LENGTH
7FAl 41 00470 LD B,C ;B=C (MAXIMUM LINE LNGTH)
7FA2 E5 00480 PUSH HL ;SAVE BASIC POINTER
TFAZ Z1E77F 00490 LD HL,ENDINP s SAVE RETURN ADDRESS
7FA6 E5 00500 PUSH HL
7FA7 C5 00510 PUSH BC

Page 117

TRS5-80 ROM Routines Documented

7FA8 217403 00520 LD
7FAB E5 00530 PUSH
7JFAC 2AA740 00540 LD
7FAF C2D905 00550 Jp
7FB2 E5 00560 PUSH
7FB3 3EQOE 00570 LD
7FB5 CD3300 00580 CALL
7FB8 CD4900 00590 KEYSCN CALL
7FBB FE20 00600 Cp
7FBD 380D 00610 JR
7FBF 77 00620 LD
7FC0 78 00630 LD
7FC1 B7 00640 OR
7FC2 28F4 00650 JR
7FC4 T7E 00660 LD
7FC5 23 00670 INC
7FC6 CD3300 00680 CALL
7FC9 05 00690 DEC
7FCA 18EC 00700 - JR
7FCC FEOD 00710 CNTRL CP
7FCE F5 00720 - PUSH
7FCF CA6906 00730 JP
7FD2 Fl 00740 POP
7FD3 FEOL1 00750 cp
7FD5 CA6106 00760 Jp
7FD8 11B87F 00770 LD
7FDB D5 00780 PUSH
7FDC FEO8 00790 CcpP
7FDE CA3006 00800 Jp
7FEl FELS8 00810 CP
7FE3 CA2B06 00820 JP
7FE6 C9 00830 RET
7FE7 Cl 00840 ENDINP POP
7FE8 DABE1D 00850 JP
7FEB C5 00860 PUSH
7FEC E3 00870 EX
7FED CD0OD26 00880 CALL
7FF0 CDF40A 00890 CALL
7FF3 EB 00900 EX
7FF4 E3 00910 EX
7FF5 D5 00920 PUSH
7FF6 0600 00930 LD
7FF8 CD6828 00940 CALL
7FFB El 00950 POP
7FFC AF 00960 XOR
7FFD C3321F 00970 Jp
06cCC 00980 END

00000 TOTAL ERRORS

CNTRL 7FCC ENDCHK 7F8E
KEYSCN 7FBS8 LINE 7F76

HL,0374H
HL

HL, (40A7H)

Nz ,05D9H
HL
A,0EH
0033H
0049H
20H
C,CNTRL
(HL) ,A
A,B

A
Z,KEYSCN
HL
0033H

B
KEYSCN
ODH

AF
Z,0669H
AF

1
z2,0661H

DE,KEYSCN

DE

8
Z,0630H
18H
Z,062BH

BC
C,1DBEH
BC
(SP),HL
260DH
0AF4H
DE, HL
(SP) ,HL
DE

B,0
2868H
HL

A
1F32H
6CCH

ENDINP
NOEXP

Page 118 -

Appendix VII

: SAVE RETURN ADDR

; GET START OF BUFFER

; IF THERE WAS NO "!" CHAR
;SAVE START OF BUFFER

; TURN ON CURSOR

;GET KEYBOARD CHARACTER
sCHECK FOR CONTROL CHAR

; IF CONTROL CHARACTER

;s SAVE CHARACTER AT (HL)

;s MAXIMUM LENGTH REACHED?

; IF MAXIMUM LENGTH

; GET CHARACTER

; ADVANCE BUFFER POINTER
;DISPLAY CHARACTER

;s DECREMENT CHAR COUNT
sGET NEXT CHARACTER

;WAS <ENTER> PRESSED?
;:MAY BE NEEDED

: IF <ENTER>

;NOT NEEDED~-RESTORE

;WAS <BREAK> PRESSED?

: IF <BREAK>

: SAVE RET ADDRESS

; ON STACK

:WAS BACKSPACE PRESSED?
: IF BACKSPACE

; SHIFT-BACKSPACE PRESSED?
; IF SHIFT-BACKSPACE
;:NEXT KEYSCAN

;BC=BASIC POINTER

; IF "BREAK" WAS PRESSED
:SAVE BASIC POINTER

; SAVE INPUT PTR-GET BASIC
;FIND OR CREATE VARIABLE
; TM ERROR IF NOT STRING
; SWITCH BASIC & ADR PTRS
;SWITCH INP, VAR ADR PTRS
;SAVE BASIC POINTER

s TERMINATING BYTE=0
;CREATE STRING

;RESTORE BASIC POINTER

; ZERO ACCUMULATOR

; JUMP TO ROM

;MODEL III USE 1Al9H

FCERR 7F8B
SVLGTH 7F90

TRS-80 ROM Routines Documented Appendix VIIIX

APPENDIX VIII
BASIC TOKENS AND ENTRY POINTS

This table of BASIC entry points is provided for the benefit of
those that wish to disassemble the ROM routines for the various BASIC
statements and functions. It also shows the single~byte token used to
represent each of the BASIC reserved words. Use of a single byte to
represent each BASIC statement, function, or operator conserves memory
and allows the BASIC interpreter to distinguish between these and
other parts of the program (such as ASCII text, variable names, etc.).
The entry address is the one used by BASIC and may not necessarily be
the best entry point for use with other machine language routines.
When no entry address is shown, it usually means that the token is
referenced only to modify the action of another routine (for example,
the token USING means something only within the PRINT routine).

! FBH

* CFH

+ CDH

- CEH

/ DOH

< D6H

= D5H

> D4H

ABS D9H 0977H
AND D2H

ASC F6H 2A0FH
ATN E4H 15BDH
AUTO B7H 2008n
CDBL F1H 0ADBH
CHRS$ F7H ZRLFH
CINT EFH 0ATFH
CLEAR B8H 1E7AH
CLOAD B9H 2C1FH
CLOSE A6H 4185H
CLS 84H 01Cc9H
CMD 854 41738
CONT B3H 1DE4H
CoSs ElH 1541H
CSAVE BAH 2BF5H
CSNG FOH 0AB1H
CvD E8H 415EH
Ccvi E6H 4152H
CVS E7H 4158H
DATA 88H 1F05H
DEF BOH 415BH
DEFDBL 9BH 1E09H
DEFINT 99H 1E03H
DEFSNG 9AH 1E06H
DEFSTR 98H 1E00H
DELETE B6H 2BC6H
DIM 8aH 2608H
EDIT 9DH 2E60H

Page 119

TRS-80 ROM Routines Documented Appendix VIII

ELSE 95H 1F07H
END 80H 1DAEH
EOF E9H 4161H
ERL C2H

ERR C3H

ERROR 9EH 1FF4H
EXP EOH 1439H
FIELD A3H 417CH
FIX F2H 0B26H
FN BEH

FOR 81H 1CAlH
FRE DAH 27D4H
GET A4H 41 7FH
GOSUB 91H 1EB1H
GOTO 8DH 1EC2H
IF 8FH 2039H
INKEYS C9H ,

INP DBH 2AEFH
INPUT 89H 219AH
INSTR C5H

INT D8H 0B37H
KILL AAH 4191H
LEFTS F8H 2A61H
LEN F3H 2A03H
LET 8CH 1F21H
LINE 9CH 41A3H
LIST B4H 2B2EH
LLIST B5H 2B29H
LOAD A7H 41 88H
LOC EAH 4164H
LOF EBH 4167H
LOG DFH 0809H
LPRINT AFH 2067H
LSET ABH 4197H
MEM C8H

MERGE A8H 41 8BH
MIDS -FAH 2A9AH
MKDS$ EEH 4170H
MK IS ECH 41 6AH
MKSS$ EDH 41 6DH
NAME A9H 41 8EH
NEW BBH 1B49H
NEXT 87H 22B6H
NOT CBH

ON aAlH 1F6CH
OPEN A2H 4179H
OR D3H

ouT AOH 2AFBH
PEEK E5H 2CAAH
POINT C6H

POKE B1lH 2CB1H
POS DCH 27F5H
PRINT B2H 206FH
PUT ASH 41 82H
RANDOM 86H 01D3H
READ 8BH 21EFH

Page 120

TRS-80 ROM Routines Documented : Appendix VIII

REM 93H 1FP07H
RESET 82H 0138H
RESTORE 90H 1D91H
RESUME ~ 9FH 1FAFH
RETURN 92H 1EDEH
RIGHTS ; F9H ~ 2A91H
RND » DEH 14C9H
RSET ACH 419AH
RUN . BEH 1EA3H
SAVE V ADH 41A0H
SET 83H 0135H
SGN « D7H 098AH
SIN E2H 1547H
SQR DDH , 13E7H
STEP CCH
STOP 94H 1DA9H
STR$ F4H 2836H
STRINGS C4H
SYSTEM AEH 02B2H
TAB(BCH
TAN E3H 15A8H
THEN CAH
TIMES C7H 4176H
TO BDH
TROFF 97H 1DF8H
TRON 96H 1DF7H
USING BFH
USR ClH
VAL F5H 2ACSH
VARPTR COH

D1H

Page 121

TRS~80 ROM Routines Documented Address Cross—Reference
HEXADECIMAL ADDRESS CROSS~REFERENCE

The purpose of this cross-reference is to aid the reader in
finding all relevant information about a given ROM routine or memory
location. The format is as follows: A hexadecimal address is given,
followed by the page numbers of all pages on which the address
appears. Generally speaking, this cross-reference covers only
addresses that fall within the ROM and reserved RAM areas of memory.
References to RST instructions are also included under the appropriate
address (for example, references to the RST 10H routine appear under
"0010"). The fact that an address appears in this cross-reference
indicates only that the address appears somewhere on the pages
mentioned, and does not indicate that the ROM routine or memory
location is actually discussed in any detail on those pages.

0000 50,51,54,63,64, 00AE 80 0213 8l 02B2 - 74,121
65,86,94 00B2 80 0214 16,80,81,96 02cC3 83

0002 79,84 00B4 80 0215 17 02p1 82,91
0003 79 00C4 80 0218 15 02E2 82,91
0004 79 00Ce 80 021D 81 02E4 82
0008 3,51,92,111,114, 00ES 80 021E 17,81 0314 17
116,117 00EA 80 0221 80 032a 10,11,73

000B 53 00FC 30 0227 81 03z2c . 73
000D 53,79 00FF 80 0228 81 033A 15
000E 30,79 0101 80 0229 84 0348 12,15,76,85
000F 79 0105 90,96 0228 81 034cC 85
0010 3,44,46,47,51,55, 0106 80 022C 17,81 0358 12,13,14,73
92,94,106,107, 010A 80 022D 81 0358 13
108,112,114,117 010D 80 022E 18,75,81 0361 13,14,35,47,55,

0013 10 010E 90 0231 81 113,115,116
0018 3,32,52,108 010F 80 0234 81 0368 73
001B 10,79 0110 96 0235 17,81 0374 118
0020 3,31,52,74 0111 90,96 023C 81 0384 13
0028 3,12,52 0112 80 023D 81 038B 11
0028 12,13 0115 80 0240 8l 0394 16
0030 52 0118 80 0241 17,81 039cC |, 16
0033 14,15,115,118 0118 80 0242 81 03c2 16,79,82
0038 52,64,89 0llc 91 - 0243 17,81 03E2 82
003B 15,16 0llp 80 0245 8l 03E3 13,82
0040 13 0121 80 0247 81 03E9 82
0046 79 0125 80 0248 91 03EB 82
0047 79 01l2¢ 80,96 024cC 81 03FB 9l
0048 79 012p 61,72 024D 81 03FE 90
0049 13,115,118 0135 121 024F 91 0440 16
0050 19,79 0138 121 0252 81 0448 16.82
0055 19,79 0150 15 0253 81 0451 82
00:9 90 019D 44 025E 81 0452 79,82
005A . 19,79 019E 44 0260 81 0453 52
005F 79 01c9 15,80,119 0264 17,81 0455 52
0060 53,79,81,90 01D3 29,120 0266 8l 0456 52
0062 79 01D9 16,80,81,87 0268 81 0457 52,82
0063 79 O0lDA 80 0274 81 0458 15,82
0066 54,79 0lpcC 81 0277 81 0468 82
0069 79 01lEF 80 0282 8l 046B 82,83
006C 19,79 01F0 80 0283 81 0472 82
0070 79 O1lF1 80 0284 17,81,92 0473 15,82
0071 79 01F3 81 0287 17,81 0494 82
0072 54,55,83 01F4 80,81 028D 12,13,81 0496 82
0075 54 01F7 80 0292 8l 049E 82
0080 74,79 OlF8 16,18,81,84 0293 17,81,93,94 04A0 82
0082 79 0lFB 79,81 0296 17,81 04B7 82
0089 74 OlFE 16,17 0298 15,81 04B9 82
008a 74 0201 81 029F 81 0500 90
008D 74 0202 81 02A0 81 050C 82
00as 80 020F 81 02al 15,81 050E 82
00AA 80 0211 81 02a7 81 0532 82
00AC 75,80 0212 16,17,81,96 02A8 81 0534 82

Page 122

TRS-80 ROM Routines Documented

058C
058D
0SAD

05AF |

0588
058D
05CF
0500
05D1
05D3
05D4

05D8

05D9
0628
0630
0661
0669
0674
0676
0683
0699
069A
069F
06Al
06CB
06cC

06D1
06D2
0707
0708
070B
0710
0713
0716
0778
0782
0809
0847
0897
089D
08A0
08A2
08B1
08B6
08BB
08C4
08ca
08D2
08F4
093E
0955
0964
0977
0982
098a
0994
0998
09a4
09Bl
09B4
09BF
09cz2
09CB
09CE
09D2
09D3
09D6
09D7
09DF
0SF4
03F7

82
16,82
56

96

96

96

82

82
16,82,96
82,96
16

82
13,118
118
118
118
118
51,79,82,91
91

91

82
82,83
53,79
82

82
54,55,82,83,
108,117
82

82

82

28

28

28

28

28

29

61
29,120
28

28

28
28,29,30
28

65

65

65

65

65

65

65

28

32

31
29,119
29
29,121
32

32
30,32
32

32

32

32

33

33
33,48
33,49
33,44
33,44
32

33

33

09FC
09FF
0AQOC
GA39
0A49
OA4F
0A78
OATF
0A8A
0A8E
0ASA
0ASD
0AB1
0AB9
OACC
O0ACF
0ADB
OAE3
QAEC
OAEF
OAF4

0AF6
OAFB
0B26
0B37
0B3D
0B59
0BAA
0BC7
0BD2
0BF2
0CSB
0Cc70
0C77
0D33
0D45
0DAl
0pDC
ODES
0E4D
OE65
0E6C
OF0A
0F0B
0Fl18
OFA7
OFAF
OFBD
OFBE
1093
1225
1226
1233
1234
1239
123aA
1243
1244
1248
124C
124D
1247
1265
136C

13E7

13F2
13F5
13F7
1439
14C9
l4cc

33

33
32,91
32
32,92
32

32
31,59,106,119
31

31
33,59,108
31
31,119
31

31

31
31,119
31

31

31
42,59,107,113,
- 116,118
61

33
29,120
29,120
29

29

29

28

28

28

29

28

28

28

28

28

28

28

28

34

34
28,29
29,92
28,92
34

34
34,35,47
35,47
107

92

91

9L

91

91

91

92

92

92
83,92
83

92

92

91
29,121
29,30
29,390
29
29,120
29,121
. 29

14F0
1541
1547
15A8
158D
18F5
18F6
18F7
1904
1917
1918
1918
191¢C
1929
197a
198A
1997
199a
159D
19A0
19a2
19AE
19EC
1a18
1a19

1alc
1A33
1a7E
148B
1Aa9%8
1aAl
1AEC
1AF2
1AF8
1AFC
ipac
1B4S
1B4A
1B4D
1B5D
1BSF
iBsl
1B8C
1BB3
1BCO
1c90
1C96
1cal
D78
1p8B
1p91
1D9B
1DAa9
1DAE
ipBO
1DBE
1DE4
1DE9
1DF7
1DF8
1E00
1EO03
1E06
1E09
1E3D
1E46
1E4A
1E4F
1E5A
1E7A
1E83

Page 123

Address Cross—Reference

29
29,119
29,121
29,121
29,119

96

96

30,65
30,65

83

83

83

83

84

61

61

61,107,112

61

61

61

60,61

54,55,83,100,102

73
54,83,100,102

18,54,75,81,108,

117,118
73

55

55

55

55

73

73

73

56,60
55,56,60
56,60
56,120

56

56,94
55,57,73,83
83
56,57,58
73

14,35

57

32,52
51,111
120
51,112
112
57,121

14

121

120

73
113,116,118
119

61

57,121
57,121
119

119

119

119

57
35,37,114,117
61,92,114,117
35
35,55,114
119
58,101

1EA3
1EAG
1EBL
1LEC2

1EDY9

1EDE
1EEA
1F05
1707
1F21
1F24
1F26
1F27
1F32
1F6C
1FAF
1FF4
2003
2008
2039
2067
206C
206D
206F
2073
2075
2077
207¢C
2081
208F
2098
20a0
20a5
2088
20BC
20Cs
20F6
20F7
20F9
20FE
2103

2108 -

2117
2137
213a
213B
213F
2141
2164
2166
2167
2169
2174
218A
21¢%a
219E
21C9
21CD
21D5
21E3

21EF

2212
222D

2263

2278
22A0
22B6
2335
2337
2430
24a0
252¢C

121
73
120
120
61
121
61
118
58,120,121
58,120
58

58

58
114,117,118
120
121
120
61
119
120
120
92

a3
73,120
83

83

83
92,93
93

92
92,93
93

92

83

83

73

93

83
11,15
11,15,92
74
74,93
93
92,93
83,93
83

11

74

93

93

83
11,92
73

61
120
74
14,36

14,113,116,117

51
14,35
120
61

74

93

74

61
120
36

36,41,93,94,106
28

61
36,59,106,107

TRS-80 ROM Routines Documented

2540
2587
258C
25A1
2588
25D9
25F7
25FD
2608
260D

2733
273D
27D4
27DF
27F5
27FE
2802
2828
2831
2836
2839
2857
2865
2866
2868
2869
28al
28A6
28A7
28BF
28DB
299C
29A3
29C6
29C8
29CD
29CE
2A03
2A0F
2Al13
2AlF
2A3D
2A3E
2A3F
2A61
2A64
2A68
2A91
23294
2A9A
2AB3
2AB4
2AC5
2AEC
2AEF
2AFB
2B01
2B02
2B0S
2B29
2B2E
2B44
2B75
2B7E
2B85
2B88
2B89Y
2B8C
2B8E
2B91
2B93

36

58

43

43

43
31,52
30

30
58,119

36,48,49,58,113,

116,118

61

6l

58,120

44

58,120

59,73

59
59,113,116,117
61

44,121

107

48,49

47

47
47,113,116,118
47

61

11

11,15,34,606,80,84

48
61
43
61
43,44
44

44

44
45,120
45,119
94
45,119
45

45

45
46,120
45
46,48,49,59
46,121
46
46,120
46

46
46,121
74

120
120

92
37,114
31,74
120
120

74
11,59
59

83

83

83

83

83
83,84
83

2BC6
2BE4
2BES
2BF5
2C1lF
2C25
2C29
2C33
2C39
2C42
2C7A
2CTF
2C81
2C82
2C8A
2¢8C
2CAS
2CAA
2CBl
2CBD
2E60
2FFB
2FFF
3000
3003
3006
3009
300C
300F
3012
3013
3015
3016
3018
301B
301E
3021
3024
3027
3029
302a
302D
302E
3030
3031
3033
3036
3039
303D
303E
3040
3041
3042
3043
3044

© 3045

3060
3064
307D
3084
30A0
30Aa4
308D
30C4
30E0
30E4
30FD
3100
3102
3103
3104
3105

119

60

60

17,119
18,84,93,119
93

93

94

94

84

84

84

84

84

84

84

84

120

120

92

119

94

63,86
18,63,84,86
18,84

18,84

18,84
18,81,84
18,84
53,79,84,87
87
51,79,84,87
87

52,84

19,84

19,84

19,84
14,82,84
20,84,86,87
86,87

84

83,84,87

87

46,47,49,72,84,87
46,87
49,84
49,84
54,79,84
87

87

86

87
18,84,87
87

84,86 ,87
86

87

87

87

87

87

87

87

a7

87

87

88

52

52

52

52,88

88

310a
3108
313A
313B
313F
3140
3144
3145
3185
31a4
31BD
3203
3241
32BA
jaca
3365
3369
338E
33FC
33FE
33FF
3400
3401
3447
344cC
344D
344E
3454
3455
3461
34CD
34CE
34D9
34FC
34FD
3517
3518
3518
351C
351E
351F
3527
3528
3529
35A9
35FA
36D6
36E0
36E6
36FF
3700
3707
3708
370F
3710
3731
3733
3739
377A
3778
3798
3799
37a3
3784
37AE
37AF
37B4
37BS5
37Cl
37¢c2
3707
37p8

Page 124

Address Cross-Reference

88
87,88
88
88
88
88
88
85
a8
85
84
75
75
75
75
53
53
88
52
52
52
52,88
87,88
52
52
52
52
88
88
87
88
87,88
88
88
88
88
88
88
88
88
88
88
88
53
65
53,65,75
88
88
88
88
88
89
89
89
89
89
89
89
89
89
89
89
89
87,89
89
89
89
89
89
87,89
89
89

37DA
3708
37DC
370D
37DE
37DF
37E0
37El
37E4
37E5
37E7
37E8

37EA
37EB
37EC
37ED
37EE
37EF
37F4
37F5
37F6
37FC
37FD
37FE
37FF
3800
3801
3802
3804
3808
3810
3820
3840
3880
3BFF
3¢C00
3FFF
4000
4003
4006
4009
400C
400F
4012
4013
4014
4015
4016
4017
4018
4019
401A
4018
401C
401D
401E
401F
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
402A
4028
402C
402D

88

89

89

63

63

63

63,84,89
63,89
63,89,96,97
89

89
15,16,63,64,82,
96,97,102,103
89

80

63,64

63

63

63

89

89

89

89

89

89
63,84,86,89
63

&5

65

65

65

65

65
13,65,103
9,77,89
63
8,12,63,92
8,12,63

3,50,51,63,64,82

51
32,52
31,52

3,12,52

52

3,52
52
64
8,64
8,10

w
N O ®OWDdOD

[
s
e

-

7

-]
-
ot
r- 3

8,64,88
64,100,101,108

TRS~-80 ROM Routines Documented

402F
4030
4032
4033
4035
40136
4037
4038
4019
403A
4038
403¢
403D
403E
4040
4041
4042
4043
4044
4045
4046
4049
404A
407D
407F
4080
408D
408E
408F
4090
4092
4093
4094
4095
4096
4097
4098
4099
4094
4098
409C
469D
409E
409F
40A0
40Al1
40A2
40A3
40R4
40AS
4046
40A7

40A8

40A9
40AA
40AB
40AC
40AD
40AE
40AF

40B0
40B1
40B2
40B3
40B4
4085
40D2
40D3
40D5

64

64

64

64

64,82
64,65,75,77,88
65

65

. 65

65

65
64,65,75,77,88

11,12,53,65,76,85

65
49,53,65,76
49,76

49,76
49,53,65,76
49,76

49,76
49,53,65,76
54,65,98,101
54

65

54,65

30,65

30,65

66,73

66,73

66

66

66

66

66

66

66

66

44,66

66

11,16,66
10,11,34,67,92
&7

. 67
57,58,67,69,83
57,67,69

59,67

59,67
67,70,82,83
67,70,82
11,15,58,67,92

$,13,57,59,67,74,

79,113,118
5,13,57,59,67,
74,113

36,67,93

68

68

68

68

68
11,26,52,58,68,
106,113

68
67,68,69,98,101
68,69

68

68

40,68

62,68

48,69

48,69

40D6
40D7
40D8
40D9
40DA
4008
40pC
400D
40DE
40DF
40E0
40E1
40E2
10E3
40E4
40ES

40E6 ¢

40E7
40F8
40E9

40 EA:

40ER
408C
40FD
40EFE
40EF
40F0
40F1
40F2
40F3
40F4
40F5
40F6
40F7
40F8
40F9
40FA
40FB
40FC
40FD
40FE
40FF
4100
4101
4102
4103
411A
4118
411cC
411D
411E
411F
4120
4121

4122

4123
4124
4125
4126
4127
4128
412A
412E
412F
4130
4135
4136
4149
414n

71
57,71
71
37,71
37,71
37,71
37,71
57,71
27,72
26,27,106
27

27

27

9,27,32,33,40,42,

47,48,49,94,106,
107,108,114

9,27,32,33,40,42,

47,48,114
9,27,32
26,27,32
27

27

26,27

27

27
26,27,72
72
34,72,107
34,72
34,72
34,72
27,72

4151
4152
4155
4158
4158
415E
4161
4164
4167
416A
416D
4170
4173
4176
4177
4179
417C
417F
4182
4185
4188
4188
418E
4191
4194
4197
419A
419D
41 A0
41A3

41A5
41a6
41A9
41AC
41AF
41B2
41B5
4188
41BB
41BE
41C1
41C4
41C?
41CA
41CD
41D0
41D3
41D6
41D9%
41DC
41DF
41E2
41E4
41ES
41E6
4187
41E8
41E9
41EB
41EC
41ED
41EE
41EF
41F0
41F1
41F3
41F4
41F5
41F6
41F7
41F8

Page 125

Address Cross~Reference

27,72
2,3,72,119
72
72,119
72,119
72,119
72,120
72,120
72,120
72,120
72,120
72,120
72,119
72,121
89
72,120
72,120
72,120
72,120
72,119
72,120
72,120
3,72,120
72,120
72,106
72,120
72,121
72
72,121
2,3,72,111,116,
-~ 117,120
72
3,4,62,73
73

73

13,73

73

55,73
55,73
73,101
11,73
10,73
13,73

74
3,4,74
73

8,74.75,77,79
8

8,74
8,19,74,79
8

8,77,88
8,77,88

9

9

9

9,19

9

9,77,89
9,77,89
9
9

‘ 9
9,19,75,80

"41F9

41FA
41FB
41FC
41FD
41FE
41FF
4200
4201
4202
4203
4205
4206
4208
4209
420B
420C
420D
420E

420F

4210
4211
4212
4213
4214
4215
4216
4217
4218
4219

421R -

421B
421C
421D
421E
421F
4220

4221

4222
4223
4224
4225
4288
42E4
42E5
42E7
42E8
42E9
42F8
434C
43E8
43E9
4411
4414
444C
4514

12,15,75,76,85
18,76

76

76

76

76
49,65,76
49,76
49,76
49,76
49,76

. 49,76
49,65,76
9,76,79,89
9

9,89
9,19
19

19
19,76
9,77

74,77,79
- 74

63,74,77,79,80
38,83

75,80

80,83
63,74,77,80
38,83

98,101

80

80,83
80

TRS-80 ROM Routines Documented ‘ . Afterword

Afterword
by Charley Butler

I am very proud that Jack Decker has chosen us for his publisher.
Jack has always freely shared his technical expertise with TAS
readers. He has contributed to the well-being of many programs that
are published by TAS: Some without reward or recognition. For that,
and this book, we extend our most cordial: Thank You, Jack..

Mastering assembly lanquage is difficult, especially if you don't
have the "big picture". The element most frequently missing is a
general understanding of your machine, what it does, and how it works.
Until you have the understanding of some rather unusual concepts, like
"vectors", "device control blocks" and "number type flags" (and a few
other things) you cannot become a capable machine language programmer.
But assembly can be mastered with lots of patience and information.
Jack provides the last part -- you've got to provide the first.

Don't be afraid to read this book twice. There's too much to
grasp in a single sitting.

And don't be afraid to report errata, missing entries, and
suggestions for future volumes. Who knows, maybe Jack will want to
show us how to "tweak" BASIC and eliminate little used functions and
add needed functions. We need your feedback. Part of the price you
pay for this book is to help cover the expense of monitoring and
acting on that feedback -- and ultimately providing a better product
for all.

Address all correspondence to:
The Alternate Source
704 North Pennsylvania Avenue
‘Lansing, Michigan 48906

Thank you for your kind support.

Page 126

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf

